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I. INTRODUCTION

In the past different types of derivatives were defined and

investigated [1]. Laplace derivative and Riemann derivative 

are such two derivatives [6]. Laplace derivative was first 

introduced in and studied in [2]. Laplace-Riemann 

derivative is another generalization of ordinary derivative 

which is defined with the help of the concept of the previous 

two derivatives [5]. In this section, we have studied the 

order Laplace-Riemann derivative and have shown by 

example that the Laplace-Riemann derivative is more 

general than the ordinary derivative [3]. Also, we have 

proved some theorems regarding monotonicity and Mean 

value property for the Laplace-Riemann derivative of a 

function having Upper semi-continuity and property D [8]. 

A. Definitions and Notations

Definition 1.1: Let :f →R R  be a function, which is 

specially Denjoy-integrable in some neighborhood of 

x R .If the limit 

1

0

lim ( , , )
!

n
st n

s

s
e f x t dt

n

+
−

→


exists then it is said to be the 
thn right Laplace-Riemann 

derivative of f  at x  and is denoted by ( )nLRD f x+
. If

the limit 

1

0

lim( 1) ( , , )
!

n
n st n

s

s
e f x t dt

n

+
−

→
−  −

exists then it is said to be the left Laplace-Riemann 

derivative of order n off at x and is denoted by ( )nLRD f x−

. 

If both ( )nLRD f x+
 and ( )nLRD f x−

 exist and are

equal, then the common value is called the n th−  Laplace- 

Manuscript received on 16 April 2024 | Revised Manuscript 

received on 15 May 2024 | Manuscript Accepted on 15 October 

2024 | Manuscript published on 30 October 2024. 
*Correspondence Author(s) 

S. Deb*, Student, Department of Mathematics, Visva-Bharati, 
Santiniketan, Bolpur (West Bengal), India. E-mail ID: 

debsuranjana@gmail.com, ORCID ID: 0009-0008-4719-1082 

© The Authors. Published by Lattice Science Publication (LSP). This is 

an open access article under the CC-BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/) 

Riemann derivative of f  at x  and is denoted by

( )nLRD f x [4]. 

The Definitions are independent of   [ 4]. 

B. Propeties of Laplace-Riemann Derivative

To study properties of Laplace-Riemann derivative,

following lemmas are used. 

Lemma 1.1 : If  ( ) ( )nt o t = , then 

(i)

1

0
0 0

\

1 ( )
lim ( ) 0,( ) lim 0

!

hn
st

ns h

s t
e t dt ii dt

n h t





+

−

→ →
= =  . 

The proof is given in [4]. 

Lemma 1.2: If p, q are positive integers and  0   then 

1

0

! (1)q st p q ps e t dt p s o



− − −= +  as s → . 

The proof is given in [5] 

Lemma 1.3:  If p, q are positive integers and  0   then 

1

0

! (1)q st p q ps e t dt p s o



− − −= +  as s → . 

The proof is clear [6] 

Also, we know: 

1.For :f →R R  be a function, which is special Denjoy

integrable in some neighborhood of x R , if the 
thn

Peano derivative of f  at x  i. e. ( )nf x  exists then 

( )nLRD f x exists and ( ) ( )n nf x LRD f x= .The 

converse of the Theorem is not true [4]. 

2.If the 
thn  general derivative of f  at x  i. e. ( )nf x

exists then the n th−  Laplace-Riemann derivative of f  at 

x i. e. ( )nLRD f x  exists with same value but not 

conversely [3]. 

3. ( ) ( ) ( ) ( )n n n nRD f x LRD f x LRD f x RD f x− − + +  

Here,  ( )nRD f x+
and  ( )nRD f x−

are the right and left

thn Riemann derivative off at xrespectively. The converse 

is not true in general [4]. 

4. ( ) ( ) ( ) ( )n n n nLD f x LRD f x LRD f x LD f x− − + +  

Here,  ( )nLD f x+
and ( )nLD f x−

are the right and left

thn Laplace derivative off at x respectively. The converse is 

not true in general [7].
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Remark: Laplace-Riemann derivative is more general than ordinary derivative, Peano derivative, Laplace derivative, 

Riemann derivative. 

C. Basic Property 

1) ( )( ) ( ) ( )n n nLRD f g x LRD f x LRD g x+ = + . 

Proof. 
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2)For a scalar k, ( )( ) ( )n nLRD kf x kLRD f x=  

Proof. 
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. 

3) ( )( ) ( ) ( )n n nLRD f g x LRD f x LRD g x− = − . 

[Evident from 1) and 2)] 

D. Example of Laplace-Riemann Derivative of Some Common Functions 

(i)Let ( ) xf x e= . 

1( , , ) ( ) ( ) [ 1]x t x t xf x t f x t f x e e e e+ = + − = − = −  

( 1)
2 1 2 2

0 0

1 1
lim ( , , ) lim [ 1] lim

1

s s
st st t x x x

s s s

e e
s e f x t dt s e e e dt s e e

s s

   − − −
− −

→ → →

 − −
 = − = − = 

− − 
   

Thus, 
1 ( ) xLRD f x e=  

2 2 2( , , ) ( 2 ) ( ) ( ) [ 1]x t x t x t t xf x t f x t f x t f x e e e e e e+ + = + − + + = − + = − +  
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Thus 
2 ( ) xLRD f x e=  

 

(ii)Let 
2( )f x x= . 
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II. MAIN RESULTS 

Theorem 2.1: Let f be a non-decreasing function in [a, b], 

then  
1 0LRD f+   in [a,b].  The converse is also true.  

Proof. Let   be arbitrary small number such that 

[ , ]x a b+   whenever  [ , ]x a b . 


2 2

1

0 0

( ) lim ( , , ) lim [ ( ) ( )] 0st st

s s
LRD f x s e f x h dh s e f x h f x dh

 

+ − −

→ →
=  = + −   , 

as  ( ) ( ) 0f x h f x+ −   for all [0, ]h  . Hence, 

1 0LRD f+   in [a,b]. 

Conversely, 

suppose 
11 0LRD f+   in [a,b]  

2

0

. , lim [ ( ) ( )] 0st

s
So s e f x h f x dh



−

→
+ −   

( ) ( ) 0f x h f x + −   for all [0, ]h  . 

Therefore,  f is non-decreasingin [a, b] 

Theorem 2.2 : Let  f  be a function which is continuous 

in[a,b], 
1LRD f+

 and  
1LRD f−

 exist in a set E contained 

in $[a, b]$, then 
1 1, ( )LRD f LRD f+ −  1B E . 

Moreover, if (i)
pLRD f  is finite, (ii) iLRD f  is 

continuous in E, 0,1,...,i p= , (iii) 1pLRD f+

+  and 

1pLRD f−

+  exist in E, then 

1 1, ( )p pLRD f LRD f+ −

+ +  1B E . 

Proof. 

Given f is a function which is continuous in [a, b], 

1LRD f+
 and 

1LRD f−
 exist in a set E contained in 

[a, b]. 

Since 
1LRD f+

 and 
1LRD f−

 exist in E,  

2

0

lim ( , , )st

s
s e f x t dt



−

→
  and 

2

0

lim( 1) ( , , )n st

s
s e f x t dt



−

→
−   

exist in E. Let, 
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− −=  = −  

 

It is obvious that ( ), ( )n nF x G x  are continuous in E. 

                  

1 1lim ( ) ( ), lim ( ) ( )n n
n n

F x LRD f x G x LRD f x+ −

→ →
= =  

So, 
1 1( ), ( ) ( )LRD f x LRD f x+ −  1B E . 

Suppose, moreover, if (i)
pLRD f  is finite, (ii)

iLRD f  is continuous in E, 0,1,...,i p= , (iii) 1pLRD f+

+  

and  1pLRD f−

+  exist in E. Let,  
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It is obvious that  ( ), ( )n nx x   are continuous in E. 

         

1 1 1lim ( ) ( ), lim ( ) ( )n p p p
s n

n x LRD f x x LRD f x+ −

+ + +
→ →

 =  =  

So, 1 1( ), ( ) ( )p pLRD f x LRD f x+ −

+ +  1B E . 

Note 2.1. : Let f  be a function in [a, b]. If f  is non-

decreasing in [a, b], then  ( ) 0nLRD f x   in [a,b]. 

Proof.    Suppose , [ , ]a b   , such that ?   So, 

( ) ( )f f  . 

Now, for any  0 ( , )x a b  and for any   satisfying 

00 ( )b x  − , we have 0 0( ) ( )f x f x+  . 

0
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f x h f x ih
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−
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Let us take ( 0)h   in a way such that 

{0, ,2 ,...,( 1) }max h h n h −  . 
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Then 

1

0

( ) lim ( , , ) 0
!

n
st n

n
s

s
LRD f x e f x h dh

n

+
−

→
=   , 

provided the limit exists. 

Theorem 2.3:  Let  f  be an upper semi-continuous 

function with the property D  in the closed interval [a,b]. If 

{ [ , ] : ( ) 0}nE x a b LRD f x f+=    and ( )f E  has no 

sub-interval, then f  is non-decreasing in [a,b]. 

Proof.     Suppose  , [ , ]a b   , such that   . 

So, ( ) ( )f f  . 

Now, let 0 ( ( ), ( ))y f f   such that 0y  doesn't 

belong to  ( )f E . 

Let  0}{ [ , ] : ( )S x a b f x y=    and  0x supS= . 

Since  f is an upper semi-continuous function with 

property D  in [a,b], S is closed and thus 0x S

.Therefore, 0 0( )f x y . We will show that 0 0( )f x y= . 

If not, there exist   satisfying 0 0( ) ( )f y f x     

and ( )0 ,x  , such that ( )f  = . It contradicts that 

0x supS= . So, 0 0( )f x y= . 

Since f  is an upper semi-continuous function with 

property D  in  [a,b] and  0x  , for 0x x   , 

0( ) ( )f x f x . 

If  00 ( )x   − , then 0 0( ) ( ) 0f x f x+ −  . 

Again, f  being upper semi-continuous function with 

property  D  in [a, b], for any 0y y  there is a 

neighbourhood U  of 0x  such that 0( )y f x y   , 

whenever x U . 
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Then 

1

0 0

0

( ) lim ( , , ) 0
!

n
st n

n
s

s
LRD f x e f x h dh

n

+
−

→
=   , 

implies 0x S  and hence 0y E , a contradiction. 

So, our initial assumption is wrong. There cannot be 

, [ , ]a b   , such that   . So, ( ) ( )f f  . So, 

 f  is non-decreasing in [a, b]. 

Theorem 2.4 :  Let f  be an upper semi-continuous 

function which has the property D   in  [a, b], 

( ) 0nLRD f x    in [a,b]  except an enumerable set E . 

Then f  is non-decreasing in [a, b]. 

Proof.     Suppose 0ò  be arbitrarily small number and 

( ) ( )g x f x x= +ò . 
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s s
e f x h dh e I x h dh I x x

n n

LRD f x



 

+

+
−

→

+ +
− −

→ →

= 

=  +  =

=



 ò

  

 

as  ( , , ) 0n I x h =  

Here, g  is also an upper semi-continuous function with 

property  D  in [a, b], moreover ( )g E  is measurable thus 

contains no sub-interval. So, g  is non-decreasing in [a,b].  

Since ò   is arbitrarily small positive number,  f  is non-

decreasing in [a, b]. 

Theorem 2.5 :  Let f  be an upper semi-continuous 

function which has the property D  in [a, b], 

( ) 0nLRD f x   in [a,b] almost everywhere in [a,b], 

( )nLRD f x+  −  in  [a, b] except an enumerable set 

E . Then f  is non-decreasing in [a,b] 

Proof.     Let  { [ , ]: ( ) 0}nA x a b LRD f x+=   . 

Clearly, ( ) 0m A = . Suppose   is a continuous, non-

decreasing function in [a,b]such that  ( , , ) 0n x h   

in [a,b] except A . 

We consider an arbitrary small positive number ò  and 

take  ( ) ( ) ( )g x f x x= +ò . Then g  an upper semi-

continuous function with property D  in [a,b], 
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1 1

0 0
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lim ( , , )
!

lim ( , , ) lim ( , , )
! !
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e f x h dh e x h dh

n n

LRD f x RD x



 





+

+
−

→

+ +
− −

→ →

= 

=  + 

= +



 ò

ò

 

Therefore,  ( ) 0nLRD g x+   almost everywhere in [a, 

b] except A . Hence, g  is non-decreasing in [a, b]. 

Since ò   is arbitrarily small positive number, f  is non-

decreasing in [a, b]. 

Note 2.1:  Example of function    which is continuous, 

non-decreasing in [a, b]such that ( , , ) 0n x h   in [a, 

b] except a set A  of measure zero is   polynomial 
2 ...k kax bx −+ + + ,  where the co-efficients are all 

positive and k  is an even natural number. 

Theorem 2.6:  If f  is continuous and ( )nLRD f x  

exists then ( )nLRD f x+
 has Darboux property. 

Proof.     Let us consider that  ( )nLRD f x+
 does not 

have Darboux property, then there exist ,    such that 

( ) 0, ( ) 0f f    but ( ) 0nLRD f x+   for any 

( , )x   . 

Further, suppose 

   [ , ] : ( ) 0 , [ , ] : ( ) 0n nE x LRD f x E x LRD f x   + + − +=   =   , 

then [ , ] E E  + −= U . 

Let Q  be (if any) non-degenerate component of  E+
. 

Then Q  is an interval. Suppose $c, d$ be the end points 

of Q .  

0nLRD f+   in  Q , so  f  is non-decreasing in Q . f  

being continuous and non-decreasing in[c,d], 

( ), ( ) 0n nLRD f c LRD f d+ +  . Therefore ,c d Q , 

implies that Q  is a closed interval. Q  being arbitrary, 

every non-degenerate component of E+
 is a closed interval. 

Following similar arguments, it can be shown that every 

non-degenerate component of E−
 is a closed interval. 

Let  ,Q Q+ −
 be the collection of all non-degenerate 

components of  E+
 and E−

 respectively. Let 

Q Q+ − =Q U . Then any two distinct members of  Q  

are disjoint.  

Hence, 
0[ , ] ,P Q Q  = − QU , is perfect and 

nLRD f+
  has no point of continuity in P  relative to P, 

which is a contradiction  as [ , ]nLRD f B  +  . 

Therefore, ( )nLRD f x+
 must have Darboux property. 

Theorem 2.7:  Mean Value Theorem 

If  f  is continuous in [a,b] and ( )nLRD f x  exists in 

(a,b) then there exists ( , )c a b   such that 

( ) ( ) ( ) ( )nf b f a b a LRD f c− = − . 

Proof.     Here we may have following two cases -  

Case 1:    Let ( ) ( )f b f a= .  

Then, 
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Subcase 1-   In case ( ) 0nLRD f x   or ( ) 0nLRD f x   

in (a,b). Thus f  is monotone function. Now f being 

continuous as well as monotone, f  is constant in (a, b), 

ensuring the existence of c . 

Subcase 2-    In case f is not monotone, ( ) 0nLRD f    

and ( ) 0nLRD f    for some ,   in (a, b) and hence 

there exists ( , )a b   such that ( ) 0?nLRD f  = , 

implying c = . 

Case 2:     Let ( ) ( )f b f a . Then, suppose 

( ) ( )x f x Ax = − , A =constant. Clearly,   is 

continuous in [a, b] and ( )nLRD x  exists in (a, b). 

Also,  ( ) ( )n nLRD x LRD f x = . 

Let us take 
( ) ( )f b f a

A
b a

−
=

−
. Thus,  ( ) ( )b a = .  

By Case 1, there exists  ( , )c a b  such that 

( ) 0nLRD c =  

( ) ( )
( )n

f b f a
LRD f c

b a

−
 =

−
. 

This completes the proof of the theorem. 

III. CONCLUSION 

  If f  is continuous in [a, b], ( ) ( )f a f b=  and 

( )nLRD f x  exists in  ( , )a b  then there exists 

( , )c a b  such that ( ) 0nLRD f c = . 
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