

On Laplace-Riemann Derivatives

S. Deb

Abstract: The basic properties of the th n Laplace-Riemann derivative of a function f at a point x is studied.

Keywords: Laplace-Riemann Derivatives, Riemann - Derivatives, Derivative, Continuity, Mathematical Subject Classification 2020: 26E99, 28E99.

I. INTRODUCTION

In the past different types of derivatives were defined and investigated [\[1\]](#page-5-0). Laplace derivative and Riemann derivative are such two derivatives [\[6\]](#page-5-1). Laplace derivative was first introduced in and studied in [\[2\]](#page-5-2). Laplace-Riemann derivative is another generalization of ordinary derivative which is defined with the help of the concept of the previous two derivatives [\[5\]](#page-5-3). In this section, we have studied the order Laplace-Riemann derivative and have shown by example that the Laplace-Riemann derivative is more general than the ordinary derivative [\[3\]](#page-5-4). Also, we have proved some theorems regarding monotonicity and Mean value property for the Laplace-Riemann derivative of a function having Upper semi-continuity and property D [\[8\]](#page-5-5).

A. Definitions and Notations

.

Definition 1.1: Let $f: \mathbf{R} \to \mathbf{R}$ be a function, which is specially Denjoy-integrable in some neighborhood of $x \in R$ If the limit

$$
\lim_{s\to\infty}\frac{s^{n+1}}{n!}\int_{0}^{s}e^{-st}\Delta^{n}(f,x,t)dt
$$

exists then it is said to be the n^{th} right Laplace-Riemann derivative of f at x and is denoted by $LRD_n^+ f(x)$. If the limit

$$
\lim_{s\to\infty}(-1)^n\frac{s^{n+1}}{n!}\int\limits_{0}^{s}e^{-st}\Delta^n(f,x,-t)dt
$$

exists then it is said to be the left Laplace-Riemann derivative of order n off at x and is denoted by $LRD_n⁻ f(x)$

If both $LRD_n^+ f(x)$ and $LRD_n^- f(x)$ exist and are equal, then the common value is called the $n-th$ Laplace-

Manuscript received on 16 April 2024 | Revised Manuscript received on 15 May 2024 | Manuscript Accepted on 15 October 2024 | Manuscript published on 30 October 2024. *Correspondence Author(s)

[S. Deb*](#page-5-6), Student, Department of Mathematics, Visva-Bharati Santiniketan, Bolpur (West Bengal), India. E-mail ID: [debsuranjana@gmail.com,](mailto:debsuranjana@gmail.com) ORCID ID: [0009-0008-4719-1082](https://orcid.org/0009-0008-4719-1082)

Riemann derivative of f at x and is denoted by $LRD_n f(x)$ [\[4\]](#page-5-7).

The Definitions are independent of δ [4].

B. Propeties of Laplace-Riemann Derivative

To study properties of Laplace-Riemann derivative, following lemmas are used.

Lemma 1.1 : If $\psi(t) = o(t^n)$, then

(i)
\n
$$
\lim_{s \to \infty} \frac{s^{n+1}}{n!} \int_{0}^{\delta} e^{-st} \psi(t) dt = 0, \text{(ii)} \lim_{h \to \infty} \frac{1}{h} \int_{0}^{h} \frac{\psi(t)}{t^n} dt = 0.
$$

The proof is given in [\[4\]](#page-5-7).

Lemma 1.2: If p, q are positive integers and $\delta > 0$ then

$$
s^q \int_0^\delta e^{-st} t^p dt = p! s^{q-p-1} + o(1) \text{ as } s \to \infty.
$$

The proof is given in [\[5\]](#page-5-3)

Lemma 1.3: If p, q are positive integers and $\delta > 0$ then

$$
s^q \int_0^\delta e^{-st} t^p dt = p! s^{q-p-1} + o(1) \text{ as } s \to \infty.
$$

The proof is clear [\[6\]](#page-5-1)

Also, we know:

1.For $f: \mathbf{R} \to \mathbf{R}$ be a function, which is special Denjoy integrable in some neighborhood of $x \in R$, if the n^{th} Peano derivative of f at x i. e. $f_n(x)$ exists then $LRD_n f(x)$ exists and $f_n(x) = LRD_n f(x)$.The converse of the Theorem is not true [\[4\]](#page-5-7).

2.If the n^{th} general derivative of f at x i. e. $f^{n}(x)$ exists then the $n-th$ Laplace-Riemann derivative of f at *x* i. e. $LRD_n f(x)$ exists with same value but not conversely [3]. $D_n f(x)$ exists what same value out
 $\leq LRD_n^- f(x) \leq LRD_n^+ f(x) \leq RD_n^+ f(x)$

conversely[3].
 3. $RD_n^- f(x) \leq LRD_n^- f(x) \leq LRD_n^+ f(x) \leq RD_n^+ f(x)$ $-f(x)$ < $IDD^{-}f(x)$ < $IDD^{+}f(x)$ < DD^{+} Here, $\mathbb{E} \mathbb{R} D_n^+ f(x)$ and $\mathbb{E} \mathbb{R} D_n^- f(x)$ are the right and left n^{th} Riemann derivative off at x^{respectively. The converse} is not true in general [\[4\]](#page-5-7).

4. $LD_n^- f(x) \leq LRD_n^- f(x) \leq LRD_n^+ f(x) \leq L D_n^+ f(x)$ Here, $\mathbb{E}[LD_n^+ f(x)]$ and $LD_n^- f(x)$ are the right and left nth Laplace derivative off at x respectively. The converse is not true in general [\[7\]](#page-5-8).

Published By: Lattice Science Publication (LSP) © Copyright: All rights reserved.

Retrieval Number:100.1/ijam.D1124101422 DOI: [10.54105/ijam.D1124.04021024](http://doi.org/10.54105/ijam.D1124.04021024) Journal Website[: www.ijam.latticescipub.com](http://www.ijam.latticescipub.com/)

[©] The Authors. Published by Lattice Science Publication (LSP). This is an [open access](https://www.openaccess.nl/en/open-publications) article under the CC-BY-NC-ND license [\(http://creativecommons.org/licenses/by-nc-nd/4.0/\)](http://creativecommons.org/licenses/by-nc-nd/4.0/)

On Laplace-Riemann Derivatives

Remark: Laplace-Riemann derivative is more general than ordinary derivative, Peano derivative, Laplace derivative, Riemann derivative.

C. Basic Property

1) $LRD_n(f + g)(x) = LRD_n f(x) + LRD_n g(x)$. **Proof.** $LRD_n(f+g)(x)$ = 1 0 $\lim_{s\to\infty}\frac{e^{-st}}{n!}\int_{0}^{1}e^{-st}\Delta^{n}(f+g,x,t)$ $n+1$ β
 \int_{0}^{n} -st α *n* $\int_{0}^{s} e^{-st} \Delta^{n}(f+g,x,t) dt$ \int_{1}^{1} \int_{0}^{2} $\lim_{n \to \infty} \frac{s}{n!} \int e^{-st} \Delta^n(f +$ = 1 0 $j=0$ $\lim_{s\to\infty}\frac{1}{n!}\int_{s}e^{-st}\sum_{i=0}^{n}(-1)^{n-j}\left(\frac{1}{i}\right)(f+g)(x+jt)$ $\int_{0}^{n+1} \int_{0}^{0} e^{-st} \sum_{l=1}^{n} (1)^{n-j}$ $\sum_{i=1}^{n} n!$ $\sum_{j=1}^{n}$ $\int_{0}^{x^{n+1}} \left[e^{-st} \sum_{k=1}^{n} (-1)^{n-j} \binom{n}{k} (f+g)(x+jt) dt \right]$ $n!$ $\frac{1}{0}$ $\frac{1}{i=0}$ $\frac{1}{i}$ \int_{-1}^{1} \int_{0}^{x} -st $\sum_{n=1}^{n}$ (1)n- $\lim_{n \to \infty} \frac{s^{n+1}}{n!} \int_{0}^{s} e^{-st} \sum_{j=0}^{n} (-1)^{n-j} {n \choose j} (f+g)(x+$ = $1 \circ n$ (n) $n+1$ 0 $j=0$ \bigcup J \bigcup $N:$ $_0$ $j=0$ $\lim_{s\to\infty} \frac{1}{n!} \int_{s}^{1} e^{-sx} \sum_{i=0}^{s} (-1)^{n-i} \Big|_{i=1}^{s} \Big| f(x+it) dt + \lim_{s\to\infty} \frac{1}{n!} \int_{s}^{1} e^{-sx} \sum_{i=0}^{s} (-1)^{n-i} \Big|_{i=1}^{s} \Big| g(x+it)$ $\int_{0}^{n+1} \int_{0}^{0} e^{-st} \sum_{k=1}^{n} (1)^{n-k} \int_{0}^{n} f(x+k) dx + \lim_{k \to \infty} \int_{0}^{n+1} \int_{0}^{0} e^{-st} \sum_{k=1}^{n} (1)^{n-k} f(x+k) dx$ $s \rightarrow \infty$ *n* **i j**_{$j=0$} $\qquad \qquad$ *j* \qquad *j s s n* **i** *j* $\int_{0}^{x^{n+1}} \int_{0}^{x^{n}} e^{-st} \sum_{k=1}^{n} (-1)^{n-k} \left| \int_{0}^{x^{n}} f(x+jt) dt + \lim_{k \to \infty} \int_{0}^{x^{n+1}} \left| e^{-st} \sum_{k=1}^{n} (-1)^{n-k} \right|^{n} dx \right|$ $n!$ $\frac{1}{0}$ $\frac{1}{i=0}$ $\left(\frac{j}{j}\right)^{i}$ \cdots $s\rightarrow\infty$ $n!$ $\frac{1}{0}$ $\frac{1}{i=0}$ $\left(\frac{j}{j}\right)$ ⁺ ⁺ − [−] [−] [−] → → = ⁼ $\int_{0}^{\delta} e^{-st} \sum_{j=0}^{n} (-1)^{n-j} {n \choose j} f(x+jt) dt + \lim_{s \to \infty} \frac{s^{n+1}}{n!} \int_{0}^{\delta} e^{-st} \sum_{j=0}^{n} (-1)^{n-j} {n \choose j} g(x+jt) dt$ = 1δ $n+1$ $\begin{array}{ccc} 0 & & & \cdots & 0 \end{array}$ $\lim_{s\to\infty}\frac{1}{n!}\int_{0}^{\infty}e^{-st}\Delta^{n}(f,x,t)dt+\lim_{s\to\infty}\frac{1}{n!}\int_{0}^{\infty}e^{-st}\Delta^{n}(g,x,t)$ S^{n+1} S $s \rightarrow \infty$ *n* **i s** $\int_{0}^{s} e^{-st} \Delta^{n}(f, x, t) dt + \lim_{s \to \infty} \int_{0}^{s} e^{-st} \Delta^{n}(g, x, t) dt$ + $\begin{array}{c} \n\ast & \delta \\
\uparrow & -st \land n \in \mathcal{C} \quad \text{and} \quad t \in \mathbb{R} \n\end{array}$ $\lim_{x\to\infty}\frac{s}{n!}\int e^{-st}\Delta^{n}(f,x,t)dt+\lim_{s\to\infty}\frac{s}{n!}\int e^{-st}\Delta^{n}$ $= LRD_n f(x) + LRD_n g(x)$.

2)For a scalar k, $LRD_n(kf)(x) = kLRD_n f(x)$

Proof.

$$
LRD_n(kf)(x)
$$

\n
$$
= \lim_{s \to \infty} \frac{s^{n+1}}{n!} \int_0^s e^{-st} \Delta^n(kf, x, t) dt
$$

\n
$$
= \lim_{s \to \infty} \frac{s^{n+1}}{n!} \int_0^s e^{-st} \sum_{j=0}^n (-1)^{n-j} {n \choose j} (kf)(x + jt) dt
$$

\n
$$
= k \lim_{s \to \infty} \frac{s^{n+1}}{n!} \int_0^s e^{-st} \Delta^n(f, x, t) dt
$$

\n
$$
= kLRD_n f(x)
$$

\n3)
$$
LRD_n(f - g)(x) = LRD_n f(x) - LRD_n g(x)
$$
.

[Evident from 1) and 2)]

 $f(x) = e^x$.

D. Example of Laplace-Riemann Derivative of Some Common Functions
\n(i)Let
$$
f(x) = e^x
$$
.
\n
$$
\Delta^1(f, x, t) = f(x + t) - f(x) = e^{x+t} - e^x = [e^t - 1]e^x
$$
\n
$$
\lim_{s \to \infty} s^2 \int_0^s e^{-st} \Delta^1(f, x, t) dt = \lim_{s \to \infty} s^2 \int_0^s e^{-st} [e^t - 1]e^x dt = \lim_{s \to \infty} s^2 e^x \left[\frac{e^{-(s-1)\delta} - 1}{1 - s} - \frac{e^{-s\delta} - 1}{-s} \right] = e^x
$$
\nThus, $LRD_1f(x) = e^x$
\n
$$
\Delta^2(f, x, t) = f(x + 2t) - f(x + t) + f(x) = e^{x + 2t} - e^{x + t} + e^x = [e^{2t} - e^t + 1]e^x
$$
\n
$$
LRD_2f(x)
$$
\n
$$
= \lim_{s \to \infty} \frac{s^3}{2!} \int_0^s e^{-st} [\Delta^2(f, x, t) dt
$$
\n
$$
= \lim_{s \to \infty} \frac{s^3}{2!} \int_0^s e^{-st} [e^{2t} - e^t + 1]e^x dt
$$

Retrieval Number:100.1/ijam.D1124101422 DOI: [10.54105/ijam.D1124.04021024](http://doi.org/10.54105/ijam.D1124.04021024) Journal Website[: www.ijam.latticescipub.com](http://www.ijam.latticescipub.com/)

$$
= e^x \lim_{s \to \infty} \frac{s^3}{2!} \left[\frac{e^{-(s-2)\delta} - 1}{2 - s} - \frac{e^{-(s-1)\delta} - 1}{1 - s} + \frac{e^{-s\delta} - 1}{-s} \right]
$$

\n
$$
= e^x \lim_{s \to \infty} \frac{s^3}{2!} \left[\frac{e^{-(s-2)\delta}}{2 - s} - \frac{e^{-(s-1)\delta}}{1 - s} + \frac{e^{-s\delta}}{-s} \right] + e^x \lim_{s \to \infty} \frac{s^3}{2!} \left[\frac{-1}{2 - s} - \frac{-1}{1 - s} + \frac{-1}{-s} \right]
$$

\n
$$
= 0 + e^x
$$

\n
$$
= e^x
$$

Thus $LRD_2 f(x) = e^x$

(ii) Let
$$
f(x) = x^2
$$
.

\n
$$
\Delta(f, x, t) = f(x + t) - f(x) = (x + t)^2 - x^2 = t(2x + t) = 2xt + t^2
$$
\n
$$
\Delta^2(f, x, t)
$$
\n
$$
= \Delta f(x + t) - \Delta f(x)
$$
\n
$$
= [f(x + 2t) - f(x + t)] - [f(x + t) - f(x)]
$$
\n
$$
= f(x + 2t) - 2f(x + t) + f(x)
$$
\n
$$
= (x + 2t)^2 - 2(x + t)^2 + x^2
$$
\n
$$
= 2t^2
$$
\n
$$
LRD_1 f(x) = \lim_{s \to \infty} \frac{s^2}{1!} \int_0^s e^{-st} \Delta^1(f, x, t) dt = 2x \lim_{s \to \infty} \frac{s^2}{1!} \int_0^s e^{-st} t dt + 2 \lim_{s \to \infty} \frac{s^2}{1!} \int_0^s e^{-st} t^2 dt = 2x
$$
\n
$$
LRD_2 f(x) = \lim_{s \to \infty} \frac{s^3}{2!} \int_0^s e^{-st} \Delta^2(f, x, t) dt = 2 \lim_{s \to \infty} \frac{s^3}{2!} \int_0^s e^{-st} t^2 dt = 2.
$$

II. MAIN RESULTS

Theorem 2.1: Let f be a non-decreasing function in [a, b], then $LRD_1^+ f \ge 0$ in [a,b]. The converse is also true.

Proof. Let δ be arbitrary small number such that δ $x + \delta \in [a, b]$ whenever $\mathbb{E}[x]$ $x \in [a, b]$.

$$
\text{E}[LRD_{1}^{+}f(x) = \lim_{s \to \infty} s^{2} \int_{0}^{\delta} e^{-st} \Delta(f, x, h) dh = \lim_{s \to \infty} s^{2} \int_{0}^{\delta} e^{-st} [f(x+h) - f(x)] dh \ge 0,
$$

- $f(x) \ge 0$ for all $h \in [0, \delta]$. Hence, $\text{E}[LRD_{p+1}^{-}f(x)]$ exist in E, then

as $\mathbb{F} f(x+h) - f(x) \ge 0$ for all $h \in [0,\delta]$. Hence, \mathbb{F} *LRD*⁺ $f \ge 0$ in [a,b].

Conversely,

suppose $LRD_{\mathrm{l}_{\mathrm{l}}}^{+}f\geq0$ in $[60]$ [a,b]

$$
\begin{aligned} \text{.} & \text{So,} \lim_{s \to \infty} s^2 \int_0^{\delta} e^{-st} [f(x+h) - f(x)] dh \ge 0 \text{.} \\ & \Rightarrow f(x+h) - f(x) \ge 0 \text{ for all } h \in [0, \delta]. \end{aligned}
$$

Therefore, \mathbb{F} is non-decreasing \mathbb{F} in [a, b]

Theorem 2.2 : Let $\mathbb{E}[f]$ be a function which is continuous in^[22][a,b], $LRD_1^{\dagger}f$ and $LRD_1^{\dagger}f$ exist in a set E contained in $\text{ES}[a, b] \text{ES}, \text{ then } LRD_1^+ f, LRD_1^- f \in B_1(E)$. Moreover, if (i) $LRD_p f$ is finite, (ii) $LRD_i f$ is continuous in EE, $i = 0, 1, ..., p$, (iii) $LRD_{p+1}^{+}f$ $_{+1}f$ and \overline{F}

 $LRD_{p+1}^{\dagger}f$, $LRD_{p+1}^{\dagger}f \in B_{1}(E)$.

Proof.

Given $\overline{[i]}$ is a function which is continuous in [a, b], $\overline{[i]}$ $LRD_1^+ f$ and $\overline{F_0}$ *LRD*^{*f*} exist in a set $\overline{F_0}$ ^E contained in $[f\circ [a, b].$

Since $\begin{bmatrix} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array} \end{array} \\ \end{array} \end{bmatrix} LRD_1^+ f$ and $\begin{bmatrix} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{bmatrix} LRD_1^- f$ exist in E, \mathcal{S}

$$
\lim_{s \to \infty} s^2 \int_0^s e^{-st} \Delta(f, x, t) dt \qquad \text{and} \qquad \qquad \text{and} \qquad \qquad
$$

$$
\lim_{s\to\infty}(-1)^{n} s^{2}\int_{0}^{\delta}e^{-st}\Delta(f,x,t)dt
$$

exist in E. Let,

Published By:

Retrieval Number:100.1/ijam.D1124101422 DOI: [10.54105/ijam.D1124.04021024](http://doi.org/10.54105/ijam.D1124.04021024) Journal Website[: www.ijam.latticescipub.com](http://www.ijam.latticescipub.com/)

$$
F_n(x) = n^2 \int_0^{\delta} e^{-nt} \Delta^1(f, x, t) dt, G_n(x) = (-1)n^2 \int_0^{\delta} e^{-nt} \Delta^1(f, x, t) dt
$$

It is obvious that $F_n(x)$, $G_n(x)$ are continuous in E. f_0

$$
\lim_{n \to \infty} F_n(x) = LRD_1^+ f(x), \lim_{n \to \infty} G_n(x) = LRD_1^- f(x)
$$
\n
$$
Phi_n(x) = \frac{n^{p+2}}{(p+1)!} \int_0^x e^{-nt} \Delta^{p+1}(f, x, t) dt, \Psi_n(x) = (-1)^{p+1} \frac{n^{p+2}}{(p+1)!} \int_0^x e^{-nt} \Delta^{p+1}(f, x, t) dt,
$$

It is obvious that $\left[\underline{f_0} \right] \Phi_n(x)$, $\Psi_n(x)$ are continuous in E.

$$
n \lim_{s \to \infty} \Phi_n(x) = LRD_{p+1}^+ f(x), \lim_{n \to \infty} \Psi_{p+1}(x) = LRD_{p+1}^- f(x)
$$

So, $LRD_{p+1}^+ f(x), LRD_{p+1}^- f(x) \in \mathbf{B}_1(\mathbf{E})$.

Note 2.1. : Let f be a function ϕ in [a, b]. If f is nondecreasing in [a, b], then $LRD_n f(x) \ge 0$ in [a,b].

Proof. Suppose $\alpha, \beta \in [a,b]$, such that $\alpha < \beta$? So, $f(\alpha) \leq f(\beta)$.

Now, for any $\left[\underline{f_0}\right]x_0 \in (a,b)$ and for any δ satisfying $0 < \delta < (b - x_0)$, we have $f(x_0 + \delta) \ge f(x_0)$.

$$
\Delta^{n}(f, x, h) = \sum_{i=0}^{n} (-1)^{n-i} \binom{n}{i} f(x + ih)
$$

Let us take $h(>0)$ in a way such that $max\{0, h, 2h, ..., (n-1)h\} \leq \delta$.

Hence,
\n
$$
\Delta^{n}(f, x_{0}, h)
$$
\n
$$
= \sum_{i=0}^{n} (-1)^{n-i} {n \choose i} f(x_{0} + ih)
$$
\n
$$
\Rightarrow \Delta^{n}(f, x_{0}, h) \geq \sum_{i=0}^{n-1} (-1)^{n-i} {n \choose i} f(x_{0}) + f(x_{0} + nh)
$$
\n
$$
\Rightarrow \Delta^{n}(f, x_{0}, h) \geq f(x_{0}) \sum_{i=0}^{n} (-1)^{n-i} {n \choose i} + f(x_{0} + nh) - f(x_{0})
$$
\n
$$
\Rightarrow \Delta^{n}(f, x_{0}, h) \geq f(x_{0})(-1+1)^{n} + f(x_{0} + nh) - f(x_{0})
$$
\n
$$
\Rightarrow \Delta^{n}(f, x_{0}, h) \geq f(x_{0} + nh) - f(x_{0}) \geq 0
$$
\nThen\n
$$
\sum_{i=0}^{n} f(x_{0} + nh) - f(x_{0}) = 0
$$
\n[*i*0]

Then
\n
$$
LRD_n f(x) = \lim_{s \to \infty} \frac{s^{n+1}}{n!} \int_0^s e^{-st} \Delta^n(f, x, h) dh \ge 0,
$$

provided the limit exists.

Theorem 2.3: Let $\begin{bmatrix} f_0 \\ f \end{bmatrix}$ be an upper semi-continuous function with the property D in the closed interval [a,b]. If $E = \{x \in [a,b] : LRD_n^+ f(x)f \le 0\}$ and $f(E)$ has no sub-interval, then f is non-decreasing in [a,b].

Proof. Suppose $\alpha, \beta \in [a, b]$, such that $\alpha \leq \beta$. So, $f(\alpha) > f(\beta)$.

 $\text{So, } [\underline{\textit{fn}}]$ $LRD_1^+f(x),$ $LRD_1^-f(x) \in \mathbf{B}_1(\mathbf{E})$. Suppose, moreover, if $(i)[i]$ *LRD_pf* is finite, $(ii)[i]$ $LRD_i f$ is continuous in E, $i = 0, 1, ..., p$, (iii) $LRD_{p+1}^+ f$ + and $\frac{[f_0]}{[f_0]}LRD_{p+1}^-f$ exist in $\frac{[f_0]}{[f_0]}E$. Let,

$$
\Psi_n(x) = (-1)^{p+1} \frac{n^{p+2}}{(p+1)!} \int_0^s e^{-nt} \Delta^{p+1}(f, x, t) dt,
$$

Now, let $y_0 \in (f(\alpha), f(\beta))$ such that y_0 doesn't belong to $[f_0]$ $f(E)$.

Let $S = \{x \in [a, b] : f(x) \ge y_0\}$ and $\{f \in X_0 = \text{supS}$.

Since f_0 f_1 f_2 is an upper semi-continuous function with property D in [a,b], ωS is closed and thus $x_0 \in S$.Therefore, $f(x_0) \ge y_0$. We will show that $f(x_0) = y_0$.

If not, there exist η satisfying $f(\beta) < y_0 < \eta < f(x_0)$ and $\xi \in (x_0, \beta)$, such that $f(\xi) = \eta$. It contradicts that $x_0 = \sup S \cdot$ So, $f(x_0) = y_0$.

Since f is an upper semi-continuous function with property D in [a,b] and $x_0 < \beta$, for $x_0 < x < \beta$, [for $f(x) < f(x_0)$.

If $[f_0]$ $0 < \delta < (\beta - x_0)$, then $f(x_0 + \delta) - f(x_0) < 0$.

Again, *f* being upper semi-continuous function with property D in [a, b], for any $y_0 > y$ there is a neighbourhood U of x_0 such that $y < f(x) < y_0$, whenever $x \in U$.

$$
\Delta^{n}(f, x_{0}, h) = \sum_{i=0}^{n} (-1)^{n-i} {n \choose i} f(x_{0} + ih)
$$

Let us take $h(>0)$ in a way such that $x_0 + ih \in U_{x_0 + nh}$ for all $i = 0, 1, ..., n$ and $max\{0, h, 2h, ..., (n-1)h\} \le \delta$. Therefore, erefore,
 (f, x_0, h)

$$
\Delta^{n}(f, x_{0}, h)
$$
\n
$$
= \sum_{i=0}^{n} (-1)^{n-i} {n \choose i} f(x_{0} + ih)
$$
\n
$$
\Rightarrow \Delta^{n}(f, x_{0}, h) < \sum_{i=0}^{n-1} (-1)^{n-i} {n \choose i} f(x_{0}) + f(x_{0} + nh)
$$
\n
$$
\Rightarrow \Delta^{n}(f, x_{0}, h) < f(x_{0}) \sum_{i=0}^{n} (-1)^{n-i} {n \choose i} + f(x_{0} + nh) - f(x_{0})
$$
\n
$$
\Rightarrow \Delta^{n}(f, x_{0}, h) < f(x_{0})(-1+1)^{n} + f(x_{0} + nh) - f(x_{0})
$$
\n
$$
\Rightarrow \Delta^{n}(f, x_{0}, h) < f(x_{0} + nh) - f(x_{0}) < 0
$$

Retrieval Number:100.1/ijam.D1124101422 DOI: [10.54105/ijam.D1124.04021024](http://doi.org/10.54105/ijam.D1124.04021024) Journal Website[: www.ijam.latticescipub.com](http://www.ijam.latticescipub.com/) *Published By:*

Indian Journal of Advanced Mathematics (IJAM) ISSN: 2582-8932 (Online), Volume-4 Issue-2, October 2024

Then

$$
LRD_nf(x_0)=\lim_{s\to\infty}\frac{s^{n+1}}{n!}\int_0^s e^{-st}\Delta^n(f,x_0,h)dh\leq 0,
$$

implies $x_0 \in S$ and hence $y_0 \in E$, a contradiction.

So, our initial assumption is wrong. There cannot be $\alpha, \beta \in [a, b]$, such that $\alpha < \beta$. So, $f(\alpha) > f(\beta)$. So, f_{0} *f* is non-decreasing in [a, b].

Theorem 2.4 : Let f be an upper semi-continuous function which has the property D in [a, b], $\boxed{6}$ $LRD_n f(x) \ge 0$ in [a,b] except an enumerable set E. Then f is non-decreasing in [a, b].

Proof. Suppose $\dot{\text{o}} > 0$ be arbitrarily small number and $g(x) = f(x) + \dot{\alpha} x$.

$$
LRD_n^* g(x)
$$

= $\lim_{s \to \infty} \frac{s^{n+1}}{n!} \int_{0}^{s} e^{-st} \Delta^n(g, x, h) dh$
= $\lim_{s \to \infty} \frac{s^{n+1}}{n!} \int_{0}^{s} e^{-st} \Delta^n(f, x, h) dh + \delta \lim_{s \to \infty} \frac{s^{n+1}}{n!} \int_{0}^{s} e^{-st} \Delta^n(I, x, h) dh, I(x) = x$
= $LRD_n f(x)$,

as $\mathbb{E} \Delta^n (I, x, h) = 0$

Here, g is also an upper semi-continuous function with property D in [a, b], moreover $g(E)$ is measurable thus contains no sub-interval. So, *g* is non-decreasing in [a,b].

Since $\dot{\mathbf{o}}$ is arbitrarily small positive number, \mathbb{F} is nondecreasing in [a, b].

Theorem 2.5 : Let f be an upper semi-continuous function which has the property D in [a, b], $LRD_n f(x) \ge 0$ in [a,b] almost everywhere in [a,b], $LRD_n^+ f(x) > -\infty$ in [a, b] except an enumerable set $\frac{m}{2}$ E . Then f is non-decreasing in [a,b]

Proof. Let $\Box A = \{x \in [a,b]: LRD_n^+ f(x) < 0\}$ + asing in [a,b]
= { $x \in [a,b]$: $LRD_n^+ f(x) < 0$ }. Clearly, $m(A) = 0$. Suppose $\Box \sigma$ is a continuous, nondecreasing function in **E** $\mathbb{E}[a,b]$ is uch that $\mathbb{E}[\Delta^n(\sigma, x, h) \geq 0$ in [a,b] except *A* .

We consider an arbitrary small positive number \dot{o} and take $\mathbb{E}[g(x)] = f(x) + \delta \sigma(x)$. Then g an upper semicontinuous function with property D in [[a,b],

$$
LRDn+g(x)
$$

=
$$
\lim_{s \to \infty} \frac{s^{n+1}}{n!} \int_{0}^{\delta} e^{-st} \Delta^{n}(g, x, h) dh
$$

=
$$
\lim_{s \to \infty} \frac{s^{n+1}}{n!} \int_{0}^{\delta} e^{-st} \Delta^{n}(f, x, h) dh + \delta \lim_{s \to \infty} \frac{s^{n+1}}{n!} \int_{0}^{\delta} e^{-st} \Delta^{n}(\sigma, x, h) dh
$$

=
$$
LRD_{n}f(x) + \delta RD_{n}\sigma(x),
$$

Therefore, $\mathbb{E}[R D_n^+ g(x) \ge 0]$ almost everywhere in $\mathbb{E}[a, \theta]$ b] except *A* . Hence, *g* is non-decreasing in [a, b].

Since $\dot{\text{o}}$ is arbitrarily small positive number, f is nondecreasing in \mathbb{F} [a, b].

Note 2.1: Example of function σ which is continuous, non-decreasing in [a, b] such that $\Delta^n(\sigma, x, h) \geq 0$ in $\mathbb{E}[a, \cdot]$ b] except a set \overline{A} of measure zero is polynomial \overline{a} $ax^{k} + bx^{k-2} + ... + \lambda$, where the co-efficients are all positive and *k* is an even natural number.

Theorem 2.6: If f is continuous and $LRD_nf(x)$ exists then $\text{LRD}_n^+ f(x)$ has Darboux property.

Proof. Let us consider that $\mathbb{E} LRD_n^+ f(x)$ does not have Darboux property, then there exist α, β such that \mathbb{R} $f(\alpha) < 0, f(\beta) > 0$ but $LRD_n^+ f(x) \neq 0$ for any $x \in (\alpha, \beta)$.

Further, suppose $E^+ = \left\{ x \in [\alpha, \beta] : LRD_n^+ f(x) > 0 \right\}, E^- = \left\{ x \in [\alpha, \beta] : LRD_n^+ f(x) < 0 \right\},$ then $\mathbb{E}[(\alpha,\beta]=E^+\bigcup E^-$.

Let Q be (if any) non-degenerate component of E^+ . Then \bf{Q} is an interval. Suppose \Box Sc, d\$ be the end points of \boxdot Q .

 $LRD_n^+ f > 0$ in **Q**, so $\mathbb{E} \{f \}$ is non-decreasing in **Q**. f being continuous and non-decreasing $in[*c*,*d*], \Box$ $LRD_n^+ f(c), LRD_n^+ f(d) > 0$. Therefore $c, d \in \mathbb{Q}$, implies that **Q** is a closed interval. **Q** being arbitrary, every non-degenerate component of E^+ is a closed interval. Following similar arguments, it can be shown that every non-degenerate component of E^- is a closed interval.

Let $\mathbb{Z}^2 Q^+, Q^-$ be the collection of all non-degenerate components of $\overline{\omega}E^+$ and E^- respectively. Let $\overline{\omega}$ $Q' = Q^+ \bigcup Q^-$. Then any two distinct members of $\Box Q'$ are disjoint.

Hence, $P = [\alpha, \beta] - \bigcup Q^0, Q \in \mathbf{Q}'$, is perfect and $LRD_n⁺f$ has no point of continuity in P relative to $\mathbb{E}P$, which is a contradiction as $LRD_n^+ f \in B[\alpha, \beta]$.

Therefore, $LRD_n⁺ f(x)$ must have Darboux property.

Theorem 2.7: Mean Value Theorem

If $\mathbb{E}[f]$ is continuous in [a,b] and $LRD_n f(x)$ exists in (a,b) then there exists $c \in (a, b)$ *c*_{*s*} *c d c d* $f(b) - f(a) = (b - a) L R D_n f(c)$.

Case 1: Let $f(b) = f(a)$.

Then,

Published By:

Retrieval Number:100.1/ijam.D1124101422 DOI: [10.54105/ijam.D1124.04021024](http://doi.org/10.54105/ijam.D1124.04021024) Journal Website[: www.ijam.latticescipub.com](http://www.ijam.latticescipub.com/)

29

Lattice Science Publication (LSP) © Copyright: All rights reserved.

Subcase 1- In case $LRD_n f(x) \ge 0$ or $LRD_n f(x) \le 0$ in (a,b) . Thus f is monotone function. Now f being continuous as well as monotone, f is constant in \mathbb{F} (a, b), ensuring the existence of *c* .

Subcase 2- In case *If* is not monotone, $LRD_n f(\alpha) < 0$ and $LRD_n f(\beta) > 0$ for some α, β in (a, b) and hence there exists $\xi \in (a, b)$ such that $LRD_n f(\xi) = 0$?, implying $c = \xi$.

Case $2:$ $f(b) \neq f(a)$. Then, suppose $\frac{a}{b}$ $\Phi(x) = f(x) - Ax$, *A*=constant. Clearly, Φ is continuous in [a, b] and $LRD_n\Phi(x)$ exists in (a, b).

Also,
$$
\text{Im } LRD_n\Phi(x) = LRD_n f(x)
$$
.

Let us take $\mathbb{F} [A = \frac{f(b) - f(a)}{a}]$ *b a* $=\frac{\int (b)-\int (a)}{b-a}$. Thus, $\Box \Phi(b) = \Phi(a)$.

By Case 1, there exists \mathbb{F} c $c \in (a, b)$ such that \mathbb{F} $LRD_n \Phi(c) = 0$

$$
\Rightarrow LRD_n f(c) = \frac{f(b) - f(a)}{b - a}.
$$

This completes the proof of the theorem.

III. CONCLUSION

If f is continuous in [20][a, b], $f(a) = f(b)$ and $LRD_n f(x)$ exists in $\mathbb{E}(a,b)$ then there exists $c \in (a, b)$ such that $LRD_n f(c) = 0$.

ACKNOWLEDGMENT

I am thankful to my guides S. Ray (Department of Mathematics, Visva-Bharati University) and A. Garai (Department of Mathematics, Memari College) for their support as well as the mathematicians whose work [Refer to Reference] have motivated me and guided me.

DECLARATION STATEMENT

I must verify the accuracy of the following information as the article's author.

- **Conflicts of Interest/ Competing Interests:** Based on my understanding, this article has no conflicts of interest.
- **Funding Support:** This article has not been funded by any organizations or agencies. This independence ensures that the research is conducted with objectivity and without any external influence.
- **Ethical Approval and Consent to Participate:** The content of this article does not necessitate ethical approval or consent to participate with supporting documentation.
- Data Access Statement and Material **Availability:** The adequate resources of this article are publicly accessible.
- Authors Contributions: The authorship of this article is contributed solely.

REFERENCES

- 1. P.S. Bullen and S.N.Mukhopadhyay, Relations between some general nth order derivatives, Fund. Math., 85(1974), 257-276. DOI: <https://doi.org/10.4064/fm-85-3-257-276>
- 2. R. E. Sevtic, The Laplace Derivative, Comment. Math. Univ. Carolinae, 42.2 (2001), 331-343. [http://dml.cz/dmlcz/119247.](http://dml.cz/dmlcz/119247)
- 3. S. Mukhopadhyay, Higher Order Derivatives, Chapman and Hall/CRC, Research monograph No 144, 2012. DOI: <https://doi.org/10.1201/b11617>
- 4. Subhankar Ghosh, Some Studies on Higher Order Generalized Derivatives, Symmetric Derivatives, Divided Differences and Their Interrelations, Ph. D. Thesis, Visva-Bharati University, 201[7.http://hdl.handle.net/10603/216432](http://hdl.handle.net/10603/216432)
- 5. S. N. Mukhopadhayay and S. Ray, On Laplace Derivative, Analysis Mathematica, 36 (2010), 131-153. DOI: <http://dx.doi.org/10.1007/s10476-010-0204-3>
- 6. S. Ray and A. Garai, The Laplace Derivative, Mathematics Student, Vo.81, Nos.1-4 (2012), 171-175, 177-184. [https://scholar.google.co.in/citations?view_op=view_citation&hl=en&](https://scholar.google.co.in/citations?view_op=view_citation&hl=en&user=V7pOJVgAAAAJ&citation_for_view=V7pOJVgAAAAJ:WF5omc3nYNoC) [user=V7pOJVgAAAAJ&citation_for_view=V7pOJVgAAAAJ:WF5o](https://scholar.google.co.in/citations?view_op=view_citation&hl=en&user=V7pOJVgAAAAJ&citation_for_view=V7pOJVgAAAAJ:WF5omc3nYNoC) [mc3nYNoC](https://scholar.google.co.in/citations?view_op=view_citation&hl=en&user=V7pOJVgAAAAJ&citation_for_view=V7pOJVgAAAAJ:WF5omc3nYNoC)
- 7. Deb, S. (2021). On Symmetric Riemann-Derivatives. In Indian Journal of Advanced Mathematics (Vol. 1, Issue 2, pp. 47–51). Lattice Science Publication (LSP). DOI:<https://doi.org/10.54105/ijam.b1114.101221>
- 8. Kiran, D. M. K., Kameswari, Dr. M. V. R., Sujatha, Capt. Dr. K., Sastry, K. R. K., & Naidu, B. R. (2020). Data Encryption to Decryption by using Laplace Transform. In International Journal of Innovative Technology and Exploring Engineering (Vol. 9, Issue 6, pp. 330–334). DOI[: https://doi.org/10.35940/ijitee.f3324.049620](https://doi.org/10.35940/ijitee.f3324.049620)

AUTHOR PROFILE

S. Deb, obtained M.Sc. in Pure Mathematics from University of Kalyani in 2014 and presently researching in Visva - Bharati, India on Generalized derivatives (Symmetric derivatives, Riemann-derivatives, Laplace Riemann-derivatives), trying to define new Generalized

derivatives and new integrals using Borel derivatives similar to Perron integral and Zn integral

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of the Lattice Science Publication (LSP)/ journal and/ or the editor(s). The Lattice Science Publication (LSP)/ journal and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Published By: Lattice Science Publication (LSP) © Copyright: All rights reserved.