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On the Nörlund-Rice Integral Formula 
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Abstract: After introducing the famous Nörlund-Rice integral formula, we apply it to Laguerre polynomials, Melzak’s relation, and 

Stirling numbers of the second kind to obtain nice expressions.  

Keywords: Stirling numbers, Nörlund-Rice integral, Melzak’s identity, Laguerre polynomials. 

I. INTRODUCTION

We have the Nörlund-Rice integral formula [1-6]: 

∑ (
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𝑘

)

𝑛

𝑘=0 

(−1)𝑘 𝑓(𝑘) =
(−1)𝑛 𝑛!

2𝜋 𝑖

⬚
∳
𝐶

𝑓(𝑧) 𝑑𝑧

𝑧 (𝑧 −  1)(𝑧 −  2) ⋯ (𝑧 −  𝑛)
,    𝑛 ≥ 0,  (1) 

where 𝑓 is analytic in a domain containing the interval [0, n] and C is a closed, simple, positively oriented curve surrounding 

[0, n]. 

   In Sec. 2 we provide the applications of (1) to Stirling numbers of the second kind, the Melzak’s identity, and Laguerre 

polynomials. 

II. APPLICATIONS OF NÖRLUND-RICE’S FORMULA

a).- Let us consider the analytic function 𝑓(𝑧) = 𝑧𝑚 ,    𝑚 ≥ 0 and apply it to (1).

Then (1) gives interesting expressions for the Stirling numbers of the second kind [7-9][20][21][22]: 
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thus: 
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A. Theorem

The Stirling’s numbers of second kind satisfies the recurrence relation 𝑆𝑛
[𝑘−1]

= 𝑆𝑛+1
[𝑘]

− 𝑘 𝑆𝑛
[𝑘]

(3) 

Proof: Using the expression (2) we obtain the following (see [8]) 
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= 𝑆𝑛+1
[𝑘]

− 𝑘 𝑆𝑛
[𝑘]

 ,    𝑞. 𝑒. 𝑑.

There is a well known generating function for the Stirling numbers of the second kind [8]. Upon using that generating 

function, (2) implies the property: 
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∑ 𝑆𝑚
[𝑛]∞
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𝑞𝑚
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 ,                   (4)     

                                         

Further from (2) we can Obtain the Following Compact Expression: 

 

𝑆𝑚
[𝑛]

=
(−1)𝑛

𝑛!
(1 + 𝜙)𝑛,          𝜙𝑘 ≔ (−1)𝑘𝑘𝑚 .                              (5) 

 

b).-  Let us now consider the function 𝑓(𝑧) =
𝑥𝑧

𝑧!
 . Applying this function in (1) we obtain the Laguerre polynomials [10-15] 

as given below:  

𝐿𝑛(𝑥) = ∑ (
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𝑘
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,     (6)                   

From (6), we see that  
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1
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Also from (6), we can deduce the corresponding generating function: 
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c).- Melzak’s identity [6, 8, 16-19]: 

We now consider the function 𝑓(𝑥 + 𝑦) = 𝑥 (
𝑥 + 𝑛

𝑛
) ∑ (

𝑛
𝑘

)𝑛
𝑘=0 (−1)𝑘 𝑓(𝑦 − 𝑘)

𝑥 + 𝑘
 ,   𝑥, 𝑦 ∈  ℂ, 𝑛 ≥ 0,   𝑥 ≠ 0, −1, −2, … , − 𝑛,  

(8) or any algebraic polynomial 𝑓(𝑡) up to degree n;  

 

Then from (1) and (8) we obtain 

 𝑓(𝑥 + 𝑦) = 𝑥 (
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𝑛
)

(−1)𝑛 𝑛!
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 𝑑𝑧 ,      𝑥 ≠ 0, −1, … , − 𝑛,    (9) 

 

for example, from (9) with 𝑓(𝑡) = 1 we obtain 
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𝑛
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which simplifies to the Melzak’s identity given by  

 

∑
(−1)𝑗

𝑥𝑗
∞
𝑘=𝑛 𝑆𝑗

[𝑛]
=

(−1)𝑛

(𝑥 + 1)(𝑥 + 2)⋯(𝑥 + 𝑛)
 .                     (10) 

III. CONCLUSION 

Using the Nörlund-Rice integral formula as in (1), we have 

considered some specific functions in three possible cases. 

In particular, by considering, 𝑓(𝑧) = 𝑧𝑚, we proved a 

recurrence relation satisfied by Stirling’s numbers of second 

kind as in theorem 2.1. Using the function 𝑓(𝑧) =
𝑥𝑧

𝑧!
 we 

have obtained nice expressions related to Laguerre 

polynomials and we have also used this formula to 

determine the generating function for such polynomials. 

Finally by considering 𝑓(𝑥 + 𝑦) =

𝑥 (
𝑥 + 𝑛

𝑛
) ∑ (

𝑛
𝑘

)𝑛
𝑘=0 (−1)𝑘 𝑓(𝑦 − 𝑘)

𝑥 + 𝑘
 we have obtained the 

Melzak’s Identity as described in (10). These results and 

connections will provide new insights and rich applications 

of the famous Norlund-Rice Integral formula. By 

considering more functions like what we have done in this 

paper, researchers can try to obtain more entertaining results 

in future.  
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