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Solution of Brocard’s Problem 

M. I. Karimullah

Abstract:  Brocard's problem is the solution of the equation, 

𝒏! + 𝟏 =  𝒎𝟐, where m and n are natural numbers. So far only 3

solutions have been found, namely (n,m) = (4,5), (5,11), and 

(7,71). The purpose of this paper is to show that there are no 

other solutions. Firstly, it will be shown that if (n,m) is to be a 

solution to Brocard's problem, then n! = 4AB, where A is even, B 

is odd, and |A – B| = 1. If n is even (n = 2x) and > 4, it will be 

shown that necessarily 𝑨 =
(𝟐𝒙)‼

𝟒𝒚
 and 𝑩 = 𝒚(𝟐𝒙 − 𝟏)‼, for some 

odd y > 1. Next, it will be shown that x < 2y, and this leads to an 

inequality in x [namely, (𝒙(𝟐𝒙 − 𝟏)‼  ±  𝟏)𝟐 − 𝟏 − (𝟐𝒙)! < 𝟎],

for which there is no solution when x ≥ 3. If n is odd, there is a 

similar procedure. 

Keywords: Brocard's Problem, Diophantine Equation, Brown 

Numbers 

I. INTRODUCTION

Brocard's problem is the solution of the Diophantine

Equation, n! + 1 =  m2, where m and n are natural numbers

[5][6][7][8][9]. The problem was posed by Henri Brocard in 

a pair of articles in 1876 [1] and 1885 [2], and also, 

independently in 1913 by Srinivasa Ramanujan [3]. As of 

October 2022, only 3 solutions (aka Brown numbers) have 

been found, namely (n,m) = (4,5), (5,11), and (7,71); 

Wikipedia [4]. The purpose of this paper is to show that 

there are no other solutions. 

II. NOTATION USED

The following notations are used. 

▪ N  ―  the set of natural numbers

▪ n! – the factorial of n

▪ ∈  ―  is an element of

▪ ∀  ―  for all

▪ y | x  ―  y divides x

▪ y ∤ x ―  y does not divide x

▪ :=  ―  be defined as

▪ RHS  ―  right-hand side

▪ LHS  ―  left-hand side

▪ >>  ―  is much greater than

III. PRELIMINARIES

Assume that n! + 1 =  m2.

Note that, n > 1 ⇒ n! is even ⇒ n! + 1 is odd ⇒ m2 is odd ⇒ 

m is odd. Hence, m = 2z + 1, where z ∈ N. 

That is: n! + 1 = (2z + 1)2 ⇔ n! = (2z + 1)2 – 1 = (2z)(2z + 

2) = (22)(z)(z + 1). Note that one of the factors, either z or (z

+ 1), is even while the other is odd.
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Hence, if (and only if) the factors in the prime factorization 

of n! can be partitioned into 3 sets, where one set consists of 

only 22, another set (say A) has an even product, while the 

third set (say B) has an odd product, and these two products 

(A and B) differ by 1, then n is a solution of Brocard's 

problem. Note: A, B, and y, depending on context, will refer 

to either the set of factors or to the product of the factors in 

the set. That is: n is a solution to Brocard's problem if and 

only if A and B exist, such that n! = 4AB, where A ∈ N, A 

is even, B ∈ N, B is odd, and |A – B| = 1. 

IV. N IS EVEN

Let n be even, say n = 2x and let n > 4. 

One possible partition of the factors of n! is 

n! = (2x)! = (2x)‼ (2x − 1)‼ = 4 [
(2x)‼

4
] (2x − 1)‼ 

⇒ A =
(2x)‼

4
 and B = (2x − 1)‼ 

4.1:  

It will now be shown that such a partition does not result in 

|A – B| = 1 (when n > 4). 

With A =
(2x)‼

4
 and B = (2x − 1)‼, the table below shows 

the values of A – B for a set of the first consecutive even 

(positive) integers. 
Values of A – B for First Consecutive Even Integers 

n A B A - B 

2 1/2 1 -1/2 

4 2 3 -1

6 12 15 -3

8 96 105 -9

10 960 945 15 

12 11520 10395 1125 

(As shown in the table, |A – B| = 1, when n = 4; meaning 

that n = 4 solves Brocard's problem.) 

It will now be shown that ∀ even n ≥ 10, |A − B| ≠ 1, by 

showing that A − B > 1. 

This will be proved by mathematical induction, using n = 10 

as the base case, where A − B = 15 > 1. 

Let g(2r) ≔ A − B =
(2r)‼

4
− (2r − 1)‼

For the inductive step, assume that when n = 2r (where 2r ≥ 

10), g(2r) > 1. 

Consider g(2{r + 1}) 

=
(2r+2)‼

4
− (2r + 1)‼

=
(2r+2)(2r)‼

4
− (2r + 1)(2r − 1)‼

>
(2r+1)(2r)‼

4
− (2r + 1)(2r − 1)‼

= (2r + 1) (
(2r)‼

4
− (2r − 1)‼)

= (2r + 1)g(2r) 

> 1; since (2r + 1) > 1 and, by assumption, g(2r) > 1.
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4.2:  

As shown above, g(2r + 2) > (2r + 1)g(2r) ⇒ as r gets larger, 

so does [
(2r)‼

4
 −  (2r − 1)‼]. 

Since |A − B| ≫ 1, ∀ n ≥ 10, it means that if |A – B| is to 

have a chance of being equal to 1, the factors of n! must be 

partitioned in the following way: n! = 4 [
(2x)‼

4y
] [y(2x −

1)‼], where y (y > 1) is some odd factor(s) in (2x)!!. That is, 

some odd factor(s) (whose product is y) of A must be 

transferred to B. Note that y depends on n; i.e. y is a 

function of x, y = y(x). 

Hence, if n is even, n > 4, and n is a solution to Brocard's 

problem, then  

n! = (2x)! = 4 [
(2x)‼

4y
] [(2x − 1)‼ y]; 

where y is an odd integer, y > 1,
(2x)‼

4y
∈  N and |

(2x)‼

4y
−

(2x − 1)‼ y| = 1. 

4.3:  

It will now be shown that y >
x

2
, if |

(2x)‼

4y
− (2x − 1)‼ y| =

1 

Assume that y2 | (2x)‼ 

⇒ y | 
(2x)‼

4y
  

⇒ y | (
(2x)‼

4y
−  y(2x − 1 )‼)  

⇒ y |  ± 1; an impossibility, since y > 1. 

Hence, y2 ∤ (2x)‼ 

⇒ y2 ∤ (2x. x!), since (2x)‼ = 2x. x!  
⇒ y2 ∤ x!, since y is odd  

⇒ x < 2y   

4.4:  

It will now be shown that (x(2x − 1)‼  ±  1)2 − 1 −
(2x)! < 0, if n = 2x is to be a solution to Brocard’s problem. 

 

Consider 
(2x)‼

4y
− (2x − 1)‼ y = ±1  

⇒ 4(2x − 1)‼ [y(x)]2 ± 4y(x) − (2x)‼ = 0; remember y = 

y(x) 

⇒ [y(x)]2 ±
4y(x)

4(2x−1)‼
−

(2x)‼

4(2x−1)‼
= 0; note that 4(2x −

1)‼ ≠ 0 

⇒ [y(x)]2 ±
y(x)

(2x−1)‼
=

(2x)‼

4(2x−1)‼
  

⇒ [y(x)]2 ±
y(x)

(2x−1)‼
+ (

1

2(2x−1)‼
)

2

=
(2x)‼

4(2x−1)‼
+ (

1

2(2x−1)‼
)

2

  

⇒ (y(x) ±
1

2(2x−1)‼
)

2

=
(2x)‼(2x−1)‼ + 1

4[(2x−1)‼]2   

⇒ (y(x) ±
1

2(2x−1)‼
)

2

=
(2x)! + 1

4[(2x−1)‼]2  

⇒ y(x) ±
1

2(2x−1)‼
= +

√(2x)! + 1

2(2x−1)‼
, −

√(2x)! + 1

2(2x−1)‼
   

⇒ y(x) = ∓
1

2(2x−1)‼
+

√(2x)! + 1

2(2x−1)‼
, ∓

1

2(2x−1)‼
−

√(2x)! + 1

2(2x−1)‼
  

⇒ y(x) =
∓1+√(2x)! + 1

2(2x−1)‼
,

∓1−√(2x)! + 1

2(2x−1)‼
  

⇒ y =
∓1  +  √1 + (2x)!

2(2x − 1)‼
; since y > 0 and (∓1 −

√(2x)!  +  1) < 0 

⇒ x < 2 (
∓1  +  √1 + (2x)!

2(2x − 1)‼
); since x < 2y 

⇒ x(2x − 1)‼ < ∓1 + √1 + (2x)!; note that (2x − 1)‼ >
0  

⇒ x(2x − 1)‼  ±  1 < √1 + (2x)!  

[Note that n = 2x > 4 ⇒ x > 2 ⇒ the LHS of the above 

inequality is > 0.] 

⇒ (x(2x − 1)‼  ±  1)2 < 1 + (2x)!  
⇒ (x(2x − 1)‼  ±  1)2 − 1 − (2x)! < 0  

4.5:  

It will now be shown that (x(2x − 1)‼  ±  1)2 − 1 −
(2x)! < 0 ⇒ x ≱ 3. 

Let g(2x) ≔ (x(2x − 1)‼  +  1)2 − 1 − (2x)! 
and let h(2x) ≔ (x(2x − 1)‼ − 1)2 − 1 − (2x)! =
x(2x − 1)‼ {x(2x − 1)‼ − 2} − (2x)!     
Hence, a necessary but not sufficient condition for 2x to 

solve Brocard's problem is g(2x) < 0 or h(2x) < 0. 

It will now be shown that h(2x) > 0, ∀ 2x ≥ 6. 
This will be proved by mathematical induction, using 2x = 6 

as the base case, where h(6) = 1215 > 0. 

For the inductive step, assume that when n = 2r (where 2r ≥ 

6), h(2r) > 0. 

Consider h(2{r + 1}) 

= (r + 1)(2r + 1)‼ {(r + 1)(2r + 1)‼ − 2} − (2r + 2)!  
= (r + 1)(2r + 1)(2r − 1)‼ {(r + 1)(2r + 1)‼ − 2} −
(2r + 2)(2r + 1)(2r)!  
= (2r + 1)[(r + 1)(2r − 1)‼ {(r + 1)(2r + 1)‼ − 2} −
(2r + 2)(2r)!]  
= (2r + 1)[(r + 1)(2r − 1)‼ {(r + 1)(2r + 1)(2r − 1)‼ −
2} − (2r + 2)(2r)!]  
> (2r + 1)[(r + 1)(2r − 1)‼ {r(2r + 2)(2r − 1)‼ − 2}

− (2r + 2)(2r)!] 
[since (r +  1)(2r +  1)  >  r(2r +  2), when 2r ≥  6.] 

> (2r + 1)[(r + 1)(2r − 1)‼ {r(2r + 2)(2r − 1)‼ −
2(2r + 2)} − (2r + 2)(2r)!]  
[since −2 > −2(2r + 2), when 2r ≥  6; and also (2r +
1)(r + 1)(2r − 1)‼ > 0.]  

= (2r + 1)(2r + 2)[(r + 1)(2r − 1)‼ {r(2r − 1)‼ − 2} −
(2r)!]  
> (2r + 1)(2r + 2)[r(2r − 1)‼ {r(2r − 1)‼ − 2} − (2r)!]  
[since r + 1 > r, when 2r ≥  6.]  

= (2r + 1)(2r + 2)h(2r) 

> 0; since (2r + 1)(2r + 2) > 0 and, by assumption, h(2r) > 0. 

Note that g(2x) 

= (x(2x − 1)‼ + 1)2 − 1 − (2x)!  
> (x(2x − 1)‼ − 1)2 − 1 − (2x)!  
= h(2x) 

Hence, g(2x) > 0, ∀ 2x ≥ 6. 

V. N IS ODD 

Let n be odd, say n = 2x + 1 and let n ≥ 5. 

One possible partition of the factors of n! is 

n! = (2x + 1)! = (2x + 1)‼ (2x)‼ = 4 [
(2x)‼

4
] (2x + 1)‼  

⇒ A =
(2x)‼

4
  and B = (2x + 1)‼  

5.1:  

It will now be shown that such a partition does not result in 

|A – B| = 1 (when n ≥ 5). 

With A =
(2x)‼

4
  and B = (2x + 1)‼, the table below shows 

the values of A – B for a set of the first consecutive odd 

(positive) integers. 
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Values of A – B for First Consecutive Odd Integers 

n A B A - B 

1 0.25 1 -0.75 

3 0.5 3 -2.5 

5 2 15 -13 

7 12 105 -93 

9 96 945 -849 

 

It will now be shown that ∀ n ≥ 5, |A − B| ≠ 1, by 

showing that A − B < −1. This will be proved by 

mathematical induction; using n = 5 as the base case, where 

A − B = −13 < −1.  

Let g(2r + 1) ≔ A − B =
(2r)‼

4
 −  (2r + 1)‼  

For the inductive step, assume that when n = 2r + 1 (where 

2r + 1 ≥ 5), g(2r + 1) < -1. 

Consider g(2{r + 1} + 1)  

=
(2r+2)‼

4
− (2r + 3)‼  

=
(2r+2)(2r)‼

4
− (2r + 3)(2r + 1)‼  

<
(2r+3)(2r)‼

4
− (2r + 3)(2r + 1)‼  

= (2r + 3) (
(2r)‼

4
− (2r + 1)‼)  

= (2r + 3)g(2r + 1)  

< -1; since (2r + 3) > 1 and, by assumption, g(2r + 1) < -1. 

5.2:  

As shown above, g(2r + 3) < (2r + 3)g(2r+1) with g(2r + 1) 

< -1 ⇒ as r gets larger, so does |
(2r)‼

4
 −  (2r + 1)‼|. 

Since |A − B| ≫ 1, ∀ n ≥ 5, it means that if |A – B| is to 

have a chance of being equal to 1, the factors of n! must be 

partitioned in the following way: n! = 4 [
(2x)‼y

4
] [

(2x+1)‼

y
], 

where y (y > 1) is some odd factor(s) in (2x+1)!!. That is, 

some odd factor(s) (whose product is y) of B must be 

transferred to A. Note that y depends on n; i.e. y is a 

function of x, y = y(x). 

 

Hence, if n is odd, n ≥ 5, and n is a solution to Brocard's 

problem, then 

n! = (2x + 1)! = 4 [
(2x)‼

4
y] [

(2x + 1)‼

y
] ;  

where y is an odd integer,  y > 1,
(2x + 1)‼

y
∈  N and 

|
(2x)‼

4
y −

(2x + 1)‼

y
| = 1. 

5.3:  

It will now be shown that y >
2x + 1 

3
, if |

(2x)‼

4
y −

(2x + 1)‼

y
| =

1. 

Assume that y2 | (2x + 1)‼ 

⇒ y | 
(2x + 1)‼

y
  

⇒ y | (
(2x)‼

4
y −

(2x + 1)‼

y
)  

⇒ y |  ± 1; an impossibility, since y > 1. 

 

Hence, y2 ∤ (2x + 1)‼ 

Note that, (2x + 1)!!, when expanded, gives only odd 

factors. 

If (2x + 1) ≥ 3y, then y2 | (2x + 1)!! 

Thus, 2x + 1 < 3y. 

5.4:  

It will now be shown that (
(2x + 1)(2x)‼

6
∓ 1)

2

− 1 −

(2x + 1)! < 0 if n = 2x + 1 is to be a solution to Brocard’s 

problem. 

Consider 
(2x)‼

4
y(x) −

(2x + 1)‼

y(x)
= ±1  

⇒ (2x)‼ [y(x)]2 ∓ 4y(x) − 4(2x + 1)‼ = 0 

⇒ [y(x)]2 ∓
4y(x)

(2x)‼
−

4(2x+1)‼

(2x)‼
= 0; Note that (2x)‼ ≠ 0 

⇒ [y(x)]2 ∓
4y(x)

(2x)‼
=

4(2x + 1)‼

(2x)‼
 

⇒ [y(x)]2 ∓
4y(x)

(2x)‼
+ (

2

(2x)‼
)

2

=
4(2x+1)‼

(2x)‼
+ (

2

(2x)‼
)

2

  

⇒ (y(x) ∓
2

(2x)‼
)

2

=
4(2x+1)‼(2x)‼+4

[(2x)‼]2    

⇒ (y(x) ∓
2

(2x)‼
)

2

=
4[(2x+1)!+1]

[(2x)‼]2   

⇒ y(x) ∓
2

(2x)‼
= +

2√(2x+1)!+1

(2x)‼
, −

2√(2x+1)!+1

(2x)‼
  

⇒ y(x) = ±
2

(2x)‼
+

2√(2x+1)!+1

(2x)‼
, ±

2

(2x)‼
−

2√(2x+1)!+1

(2x)‼
  

⇒ y(x) =
±2+2√(2x+1)!+1

(2x)‼
,

±2−2√(2x+1)!+1

(2x)‼
  

⇒ y(x) =
±2+2√(2x+1)!+1

(2x)‼
; since y > 0 and (±2 −

2√(2x + 1)! + 1) < 0  

⇒
2x + 1 

3
<

±2+2√(2x+1)!+1

(2x)‼
; since y >

2x + 1 

3
  

⇒
(2x + 1)(2x)‼

6
< ±1 + √(2x + 1)! + 1; note that (2x)‼ > 0    

⇒
(2x + 1)(2x)‼

6
 ∓  1 < √1 + (2x + 1)!  

[Note that n = 2x + 1 ≥ 5 ⇒ x ≥ 2 ⇒ the LHS of the above 

inequality is > 0.] 

⇒ (
(2x + 1)(2x)‼

6
 ∓  1)

2

< 1 + (2x + 1)!  

⇒ (
(2x + 1)(2x)‼

6
∓ 1)

2

− 1 − (2x + 1)! < 0  

5.5:  

It will now be shown that (
(2x + 1)(2x)‼

6
∓ 1)

2

− 1 −

(2x + 1)! < 0 ⇒ x ≱ 5  

Let g(2x + 1) ≔ (
(2x + 1)(2x)‼

6
+ 1)

2

− 1 − (2x + 1)!  

and let h(2x + 1) ≔ (
(2x + 1)(2x)‼

6
− 1)

2

− 1 − (2x + 1)!  

=
(2x + 1)(2x)‼

6
(

(2x + 1)(2x)‼

6
− 2) − (2x + 1)!     

Hence, a necessary but not sufficient condition for 2x + 1 to 

solve Brocard's problem is g(2x + 1) < 0 or h(2x + 1) <
0. 

It will now be shown that h(2x + 1) > 0, ∀ (2x + 1) ≥ 11. 
This will be proved by mathematical induction, using 2x + 1 

= 11 as the base case, where h(11) = 9630720 > 0. 

For the inductive step, assume that when n = 2r + 1 (where 

2r + 1 ≥ 11), h(2r + 1) > 0. 

Consider h(2{r + 1} + 1) 

=
(2{r + 1} + 1)(2{r + 1})‼

6
(

(2{r + 1} + 1)(2{r + 1})‼

6
− 2) −

(2{r + 1} + 1)!   

=
(2r + 3)(2r + 2)‼

6
(

(2r + 3)(2r + 2)‼

6
− 2) − (2r + 3)!  

=
(2r + 3)(2r + 2)(2r)‼

6
(

(2r + 3)(2r + 2)‼

6
− 2) − (2r + 3)(2r +

2)(2r + 1)!  

= (2r + 3)(2r + 2) [
(2r)‼

6
(

(2r + 3)(2r + 2)‼

6
− 2) − (2r + 1)!]  

> (2r + 3)(2r + 2) [
(2r)‼

6
(

(2r + 3)(2r + 2)‼

6
− 2(2r + 2)) −

(2r + 1)!]  

 

 

 

 

 

http://doi.org/10.54105/ijam.B1174.04010424
http://www.ijam.latticescipub.com/


 

Solution of Brocard’s Problem 

28

Published By: 

Lattice Science Publication (LSP) 
© Copyright: All rights reserved. 

Retrieval Number:100.1/ijam.B117404021024 

DOI: 10.54105/ijam.B1174.04010424  

Journal Website: www.ijam.latticescipub.com 
 

[since −2 > −2(2r + 2), when 2r + 1 ≥

11; and also (2r + 3)(2r + 2)
(2r)‼

6
> 0.]  

= (2r + 3)(2r + 2) [
(2r)‼

6
(

(2r + 3)(2r + 2)(2r)‼

6
− 2(2r +

2)) − (2r + 1)!]  

= (2r + 3)(2r + 2) [
(2r + 2)(2r)‼

6
(

(2r + 3)(2r)‼

6
− 2) − (2r +

1)!]  

> (2r + 3)(2r + 2) [
(2r + 1)(2r)‼

6
(

(2r + 3)(2r)‼

6
− 2) − (2r +

1)!]  

[since 2r +  2 > 2r +  1, when2r + 1 ≥ 11.]  

> (2r + 3)(2r + 2) [
(2r + 1)(2r)‼

6
(

(2r + 1)(2r)‼

6
− 2) − (2r +

1)!]  

[since 2r +  3 > 2r +  1, when2r + 1 ≥ 11.] 

= (2r + 3)(2r + 2)h(2r + 1)  

> 0; since (2r + 3)(2r + 2) > 0 and, by assumption, h(2r + 1) 

> 0. 

 

Note that g(2x + 1) 

= (
(2x+1)(2x)‼

6
+ 1)

2

− 1 − (2x + 1)!  

> (
(2x+1)(2x)‼

6
− 1)

2

− 1 − (2x + 1)!  

= h(2x + 1) 

Hence, g(2x + 1) > 0, ∀ 2x + 1 ≥ 11. 

VI. CONCLUSION 

6.1:  

If n is even, n > 4, and n is a solution to Brocard's problem, 

then  

n! = (2x)! = 4 [
(2x)‼

4y
] [(2x − 1)‼ y]; 

where y is an odd integer, y > 1,
(2x)‼

4y
∈  N and |

(2x)‼

4y
−

(2x − 1)‼ y| = 1. 

The above implies y > x/2; which, in turn, implies (x(2x −
1)‼  ±  1)2 − 1 − (2x)! < 0; which, in turn, implies x ≱ 3. 

Therefore, there is no even integer ≥ 6, which satisfies the 

above necessary condition to solve Brocard's problem. 

 

6.2: 

If n is odd, n ≥ 5, and n is a solution to Brocard's problem, 

then 

n! = (2x + 1)! = 4 [
(2x)‼

4
y] [

(2x + 1)‼

y
] ;  

where y is an odd integer,  y > 1,
(2x + 1)‼

y
∈  N and 

|
(2x)‼

4
y −

(2x + 1)‼

y
| = 1 

The above implies y >
2x + 1 

3
; which, in turn, implies 

(
(2x + 1)(2x)‼

6
∓ 1)

2

− 1 − (2x + 1)! < 0; which, in turn, 

implies x ≱ 5. 

Therefore, there is no odd integer ≥ 11, which satisfies the 

above necessary condition to solve Brocard's problem. As 

an aside: to get the solutions corresponding to n = 5 and n = 

7, y = 3 in each case. 
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