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Abstract: It is known a recurrence relation for the 

Ramanujan’s tau-function involving the sum of divisors 

function𝝈(𝒏), whose solution gives a closed formula for 𝝉(𝒏) in 

terms ofcomplete Bell polynomials, and a determinantal 

expression for 𝝈(𝒎) where participate the values 𝝉(𝒌). 
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I. INTRODUCTION

We know the following recurrence relation for the

Ramanujan’s tau-function [1, 2]: 

𝑛 𝜏(𝑛 + 1) = −24 ∑ 𝜎(𝑗)𝑛
𝑗=1 𝜏(𝑛 + 1 − 𝑗), 𝑛 ≥ 1,     (1) 

which allows an easy recursive manner to calculate the 

values of 𝜏(𝑚): 1, -24, 252, -1472, 4830, - 6048,…, that is, 

the sequence A000594 [3]. Besides, this function verifies 

interesting properties if p is a prime number [1, 2, 4-8]: 

𝜏(𝑝𝑛+2) = 𝜏(𝑝) 𝜏(𝑝𝑛+1) − 𝑝11 𝜏(𝑝𝑛),  𝑛 ≥ 0,     (2) 

|𝜏(𝑚)| ≤  𝑚
11

2  𝑑(𝑚) ∴ |𝜏(𝑝)| ≤ 2 𝑝
11

2 ,  (3) 

where 𝑑(𝑚)is the number of divisors of  m. 

In Sec. 2 we show that (1) gives two options: To write 

𝜏(𝑛) in terms of 𝜎(𝑚) via the complete Bell polynomials 

[9-15][21][22], or to express 𝜎(𝑛) as a determinant whose 

entries are values of the tau function. In Sec. 3we use (2), 

(3) and the Chebyshev polynomials [16] to obtain a formula

of Ramanujan [1][18] for𝜏(𝑝𝑛).

II. EXPLICIT SOLUTIONS OF (1)

From (1) it is immediate a closed expression for the 

Ramanujan’s tau-function in terms of the complete Bell 

polynomials [15]: 
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𝜏(𝑛 + 1) =
1

𝑛!
𝐵𝑛(−24 ∙ 0! 𝜎(1), −24 ∙ 1! 𝜎(2), −24 ∙

2! 𝜎(3), … , −24 ∙ (𝑛 − 1)! 𝜎(𝑛)),  𝑛 ≥ 0,        (4) 

which also allows reproduce the sequence of integers 

A000594., or equivalently: 

𝜏(𝑛 + 1) = ∑
(−24)𝑘

𝑘!

𝑛
𝑘=0 𝐶𝑛−𝑘

(𝑘)
 , 𝐶𝑟

(0)
= 𝛿0𝑟 , 𝐶𝑟

(1)
=

𝜎(𝑟+1)

𝑟+1
,        𝐶0

(𝑟)
= 1,  (5) 

𝑗 𝐶𝑗
(𝑟)

= ∑
[𝑚 (𝑟 +  1)  −  𝑗] 𝜎(𝑚 +  1)

𝑚 +  1

𝑗

𝑚=1 

𝐶𝑗−𝑚
(𝑟)

 . 

From (1) we can to employ determinants to obtain the 

sum of divisors function in terms of the tau function:  

𝜎(𝑛) =

−
1

24
|

|

𝑛𝜏(𝑛 + 1) 𝜏(2) 𝜏(3) 𝜏(4) ⋯ 𝜏(𝑛)

(𝑛 − 1)𝜏(𝑛) 1 𝜏(2) 𝜏(3) ⋯ 𝜏(𝑛 − 1)
⋮
⋮

2𝜏(3)

𝜏(2)

0
⋮
0
0

1
⋮
0
0

𝜏(2)
1
⋮
0

⋯
⋮
⋮
0

𝜏(𝑛 − 2)
⋮
⋮
1

|

|
,(6) 

that is: 

𝜎(1) = −
1

24
|𝜏(2)|,     𝜎(2) =

−
1

24
|
2𝜏(3) 𝜏(2)

𝜏(2) 1
| ,    𝜎(3) =

−
1

24
|

3𝜏(4) 𝜏(2) 𝜏(3)

2𝜏(3) 1 𝜏(2)

𝜏(2) 0 1

| , …          (7) 

which it is equivalent to: 

𝜎(𝑛) =
𝑛

24
∑

(−1)𝑗

𝑗

𝑛
𝑗=1 𝐴𝑛−𝑗

(𝑗)
 ,      𝐴𝑘

(0)
= 𝛿0𝑘 ,     𝐴𝑘

(1)
=

𝜏(𝑘 + 2),  𝐴0
(𝑘)

= (−24)𝑘 ,  (8) 

𝑗 𝐴𝑗
(𝑟)

= −
1

24
∑ [𝑚(𝑟 + 1) − 𝑗]

𝑗

𝑚=1 

𝜏(𝑚 + 2)𝐴𝑗−𝑚
(𝑟)

 . 

III. RAMANUJAN’S FORMULA FOR 𝝉(𝒑𝒏)

In (3) we can use  𝑚 = 𝑝𝑛, where p is a prime number,

thus|𝜏(𝑝𝑛)| ≤ (𝑛 + 1)𝑝
11 𝑛

2  , then it is natural to work with 

the expression: 
𝜏(𝑝𝑛)

𝑛+1
= 𝑄𝑛(𝑝)𝑝

11 𝑛

2  ,  |𝑄𝑛(𝑝)| ≤ 1,      (9) 

hence  𝑄1(𝑝) =
𝜏(𝑝)

2 𝑝
11
2

  verifying the property (3) proved 

by Deligne [5][19][20]. We can employ (9) in the recurrence 

relation (2) to obtain: 
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(𝑛 + 3)𝑄𝑛+2 = 2 (𝑛 + 2) 𝑄1𝑄𝑛+1 − (𝑛 + 1) 𝑄𝑛 ,          (10) 

 

whose comparison with the recurrence relation satisfied 

by the Chebyshev polynomials of the second kind [16]: 

𝑈𝑛+2(cos 𝜃) = 2 cos 𝜃 𝑈𝑛+1(cos 𝜃) − 𝑈𝑛(cos 𝜃),          (11) 

implies the connections: 

 

cos 𝜃 = 𝑄1 =
𝜏(𝑝)

2 𝑝
11
2

,         𝑈𝑛(cos 𝜃) = (𝑛 + 1)𝑄𝑛(𝑝) =

 
sin(𝑛+1)𝜃

sin 𝜃
 ,                                                                        (12) 

 

verifying the inequality (9) because we know that  

|𝑈𝑛(cos 𝜃)| ≤ (𝑛 + 1). Finally, (9) and (12) generate the 

following formula published by Ramanujan [1, 2]: 

 

𝜏(𝑝𝑛) =
𝑆𝑖𝑛 (𝑛+1)𝜃𝑝

𝑆𝑖𝑛 𝜃𝑝
𝑝

11 𝑛

2  .                                               (13) 

Remark: We note that (2) implies the property: 

𝜏(4𝑛) = 3[−8 𝜏(2𝑛) − 683 𝜏(𝑛)] + 𝜏(𝑛),                   (14) 

therefore  𝜏(4𝑛) ≡ 𝜏(𝑛)  (mod 3) [17], and: 

𝜏(4𝑛) = 8 [−3 𝜏(2𝑛) − 256 𝜏(𝑛)]      ∴       𝜏(4𝑛) ≡ 0  

(mod k),  𝑘 = 2, 4, 8.                                                      (15) 

IV. CONCLUSION 

Though there are several ways of expressing 

Ramanujan’s Tau function using polynomials, special 

functions and various tools in mathematics, in this paper, we 

have expressed the sum of divisors function as a determinant 

whose entries involves Tau function values as in (6). The 

first three values are explicitly arrived in (7). A more 

general form of these expressions are provided in (8). 

Finally using the Tau conjectures proposed by Ramanujan 

and using Chebyshev polynomials, we have deduced some 

interesting congruence related to modulo 2, 4 and 8 as 

provided in (15). These little observations may provide new 

insight upon knowing the values of Ramanujan Tau 

function.  
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