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Abstract: We have clarified several formulas from 

mathematics and physics. Specifically, we have shown that 

several standard concepts from thermodynamics, which have 

been recently investigated and rejected in some papers, continue 

to be valid. Thus, we have studied the triple product rule, the first 

law of thermodynamics, Mayer's relation, work, function of state, 

the relationship between the coefficient of thermal expansion, 

coefficient of isothermal compressibility and thermal coefficient 

of pressure. We have used multivariable calculus and properties 

of Jacobians and other mathematical tools. Likewise, we have 

provided several didactic examples concerning the interpretation 

of thermodynamical and mathematical formulas. We have 

concluded that the basement of several thermodynamical 

formulas is correct but full of subtleties. Thus, those formulas 

continue to be valid despite some claims in the recent literature. 

Keywords: Triple Product Rule, Jacobians, Natural Variables, 

Work, Function of State. 

I. INTRODUCTION

Firstly, let us remember that the American physicist

Richard Feynmann considered that ´´Thermodynamics is a 

rather difficult and complex subject when we come to 

apply it, ….´´ and ´´The subject of thermodynamics is 

complicated because there are so many different ways of 

describing the same thing´´ [1][12]. Nevertheless, we 

consider that thermodynamics is not a difficult subject to 

understand, as long as we pay attention to the details.  

Secondly, some articles have been published not long 

ago [2-5][13], where it is claimed that many 

thermodynamical formulas are erroneous because the triple 

product rule and the first law of thermodynamics would be 

untrue and imprecise, respectively. Nonetheless these 

conclusions, those types of work are interesting because it 

tries to modify some standard concepts and results in 

physics (thermodynamics [6-9][14][15]) and mathematics 

(differential and integral calculus of several variables 

[10,11][16]). 
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In this research we will introduce several very didactic 

examples concerning paying attention to details and 

subtleties to consider when studying thermodynamics. We 

also will demonstrate that the triple product rule [12], also 

known as Euler's chain rule, is correct by using the 

properties of Jacobians [8,9]. Afterwards, specifically, we 

must also point out that we will refute in detail the 

arguments that appear in Stepanov (2021) [2], which is 

interesting research but with imprecise and erroneous 

conclusions.  

II. THEORY/CALCULATION

A. Two Very Didactic Examples Concerning the Key

Role of The Natural Variables in Thermodynamics

a. Example by Using the Internal Energy

Let there be an expanding gas whose internal energy is 

𝑈(𝑇, 𝑉) , where 𝑇  is temperature and 𝑉 , volume. Then, 

from pure mathematics we have as follows: 

𝑑𝑈 = (
𝜕𝑈

𝜕𝑇
)

𝑉
𝑑𝑇 + (

𝜕𝑈

𝜕𝑉
)

𝑇
𝑑𝑉       (1) 

and from physics, namely, the first principle of 

thermodynamics (the conservation of energy) we have this 

way: 

𝑑𝑈 = 𝛿𝑄 − 𝑃𝑑𝑉  (2) 

where 𝛿𝑄 is heat and 𝑃, pressure. Besides, we consider the 

heat capacity of the gas system 𝐶 =
𝛿𝑄

𝑑𝑇
, then 𝛿𝑄 = 𝐶𝑑𝑇 . 

Therefore, 

𝑑𝑈 = 𝐶𝑑𝑇 − 𝑃𝑑𝑉  (3) 

Indeed, if we were unaware of the subtleties of 

thermodynamics, we could equalise the prefactors of the 

respective differentials and would falsely obtain these two 

´´equivalent formulas´´: 

𝐶 = (
𝜕𝑈

𝜕𝑇
)

𝑉
and  (

𝜕𝑈

𝜕𝑉
)

𝑇
= −𝑃 (4) 

To explain the origin of these two inconsistencies, we must 

point out that we can add and subtract 𝑋𝑑𝑉  in Eq. (1) 

(which could or could not have a physical meaning): 

𝑑𝑈 = (
𝜕𝑈

𝜕𝑇
)

𝑉
𝑑𝑇 − 𝑋𝑑𝑉 + 𝑋𝑑𝑉 + (

𝜕𝑈

𝜕𝑉
)

𝑇
𝑑𝑉 (5) 

by grouping terms, we get 

𝑑𝑈 = [(
𝜕𝑈

𝜕𝑇
)

𝑉
− 𝑋

𝑑𝑉

𝑑𝑇
] 𝑑𝑇 + [𝑋 + (

𝜕𝑈

𝜕𝑉
)

𝑇
] 𝑑𝑉  (6) 

Thus, it has become evident that we cannot equalise the 

prefactors of the differentials of Eq. (1) to the ones of Eq. 

(6); they are obviously different. This prohibition is valid 

even if the equations had a physical meaning like Eq. (3). 

Consequently, the two formulas of Eq. (4) are wrong. The 

solution to this apparent scientific enigma is to use the 

natural variables for 𝑈 from the beginning, that is, starting 

from 𝑈 = 𝑈(𝑆, 𝑉), where 𝑆 is entropy and 𝑉, volume.  
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This way the natural variables of the internal energy 𝑈 

play a key role in the solution to the puzzle. Then, 

considering 𝛿𝑄 = 𝑇𝑑𝑆 , from the first law of 

thermodynamics we solve for 𝑑𝑈, 

𝑑𝑈 = 𝑇𝑑𝑆 − 𝑃𝑑𝑉  (7) 

now let us consider that 𝑆 = 𝑆(𝑇, 𝑉), then 

  𝑑𝑆 = (
𝜕𝑆

𝜕𝑇
)

𝑉
𝑑𝑇 + (

𝜕𝑆

𝜕𝑉
)

𝑇
𝑑𝑉   (8) 

after replacing Eq. (8) in Eq. (7), we get 

  𝑑𝑈 = 𝑇 (
𝜕𝑆

𝜕𝑇
)

𝑉
𝑑𝑇 +  𝑇 (

𝜕𝑆

𝜕𝑉
)

𝑇
𝑑𝑉 − 𝑃𝑑𝑉  .    (9) 

Next, by considering the definition of thermodynamical 

temperature and a Maxwell relation, respectively, 

𝑇 = (
𝜕𝑈

𝜕𝑆
)

𝑉
  and   (

𝜕𝑆

𝜕𝑉
)

𝑇
= (

𝜕𝑃

𝜕𝑇
)

𝑉
  (10) 

we get, after replacing Eq. (10) in Eq. (9), 

𝑑𝑈 = (
𝜕𝑈

𝜕𝑆
)

𝑉
(

𝜕𝑆

𝜕𝑇
)

𝑉
𝑑𝑇 + 𝑇 (

𝜕𝑃

𝜕𝑇
)

𝑉
𝑑𝑉 − 𝑃𝑑𝑉     (11) 

now, we will apply the chain rule for the first addend and 

group the second and third addends. Thus, Eq. (11) 

transforms into 

𝑑𝑈 = (
𝜕𝑈

𝜕𝑇
)

𝑉
𝑑𝑇 + [𝑇 (

𝜕𝑃

𝜕𝑇
)

𝑉
− 𝑃] 𝑑𝑉  (12) 

where we can identify (
𝜕𝑈

𝜕𝑇
)

𝑉
= 𝐶𝑉 . Consequently, this 

time we can equalise the prefactors of the differentials of 

Eq. (1) to the ones of Eq. (12), because we have taken 

account the natural variables from a beginning. Therefore, 

after the corresponding comparisons, the respective 

identities obtained are now the correct ones: 

(
𝜕𝑈

𝜕𝑇
)

𝑉
= 𝐶𝑉    and     (

𝜕𝑈

𝜕𝑉
)

𝑇
= [𝑇 (

𝜕𝑃

𝜕𝑇
)

𝑉
− 𝑃]    (13) 

 

b. Example by using enthalpy 

From mathematics and thermodynamics, respectively, 

for enthalpy 𝐻 we have as follows: 

𝑑𝐻 = (
𝜕𝐻

𝜕𝑇
)

𝑝
𝑑𝑇 + (

𝜕𝐻

𝜕𝑝
)

𝑇
𝑑𝑝  (14) 

and  

𝑑𝐻 = 𝐶𝑑𝑇 + 𝑉𝑑𝑝  (15) 

If we equalise the prefactors of the respective differentials 

in Eqs. (14) and (15), we will obtain these wrong formulas: 

𝐶 = (
𝜕𝐻

𝜕𝑇
)

𝑝
 and  𝑉 = (

𝜕𝐻

𝜕𝑝
)

𝑇
 (16) 

In order to obtain the correct formulas, we start from 

𝐻 = 𝐻(𝑆, 𝑝) because the natural variables of enthalpy are 

entropy 𝑆 and pressure 𝑝. Besides, we know that enthalpy 

is defined as 

                                𝐻 = 𝑈 + 𝑝𝑉  (17) 

then 

𝑑𝐻 = 𝑇𝑑𝑆 + 𝑉𝑑𝑝 (18) 

now, by considering that 𝑆 = 𝑆(𝑇, 𝑝), we have as follows: 

𝑑𝑆 = (
𝜕𝑆

𝜕𝑇
)

𝑝
𝑑𝑇 + (

𝜕𝑆

𝜕𝑝
)

𝑇
𝑑𝑝  (19) 

replacing Eq. (19) in Eq. (18) we obtain: 

𝑑𝐻 = 𝑇 (
𝜕𝑆

𝜕𝑇
)

𝑝
𝑑𝑇 + 𝑇 (

𝜕𝑆

𝜕𝑝
)

𝑇
𝑑𝑝 + 𝑉𝑑𝑝 (20) 

or  

𝑑𝐻 = 𝑇 (
𝜕𝑆

𝜕𝑇
)

𝑝
𝑑𝑇 + [𝑇 (

𝜕𝑆

𝜕𝑝
)

𝑇
+ 𝑉] 𝑑𝑝 (21) 

 

but 𝑇 (
𝜕𝑆

𝜕𝑇
)

𝑝
= 𝐶𝑝  and (

𝜕𝑆

𝜕𝑝
)

𝑇
= − (

𝜕𝑉

𝜕𝑇
)

𝑃
. This last formula 

is a Maxwell relation. Therefore, Eq. (21) looks like this:  

𝑑𝐻 = 𝐶𝑝𝑑𝑇 + [−𝑇 (
𝜕𝑉

𝜕𝑇
)

𝑃
+ 𝑉] 𝑑𝑝 (22) 

or 

𝑑𝐻 = 𝐶𝑝𝑑𝑇 + 𝑉[1 − 𝛼𝑇]𝑑𝑝               (23) 

where 𝛼 is the thermal expansion coefficient, 𝛼 =
1

𝑉
(

𝜕𝑉

𝜕𝑇
)

𝑃
. 

Finally, we can equalize Eq. (23) with Eq. (14) and obtain 

(
𝜕𝐻

𝜕𝑇
)

𝑝
= 𝐶𝑝   and    (

𝜕𝐻

𝜕𝑝
)

𝑇
= 𝑉(1 − 𝛼𝑇) .    (24) 

These are the correct formulas for enthalpy because we 

began the calculations from its natural variables (𝑆 and 𝑝).  

B. Demonstration of the Triple Product Rule Based 

on the Properties of Jacobians 

We begin from the following expression: 

E = (
𝜕𝑥

𝜕𝑦
)

𝑧
(

𝜕𝑦

𝜕𝑧
)

𝑥
(

𝜕𝑧

𝜕𝑥
)

𝑦
  (25)  

then, by considering the partial derivates as Jacobians [8,9], 

we have 

(
𝜕𝑥

𝜕𝑦
)

𝑧
=

𝜕(𝑥,𝑧)

𝜕(𝑦,𝑧)
 ,  (

𝜕𝑦

𝜕𝑧
)

𝑥
=

𝜕(𝑦,𝑥)

𝜕(𝑧,𝑥)
  and  (

𝜕𝑧

𝜕𝑥
)

𝑦
=

𝜕(𝑧,𝑦)

𝜕(𝑥,𝑦)
   (26) 

thus expression E looks like this: 

E =
𝜕(𝑥,𝑧)

𝜕(𝑦,𝑧)

𝜕(𝑦,𝑥)

𝜕(𝑧,𝑥)

𝜕(𝑧,𝑦)

𝜕(𝑥,𝑦)
   (27)  

now, we will apply some properties of Jacobians, namely, 

we permute variables 𝑧 and 𝑥, 
𝜕(𝑦,𝑥)

𝜕(𝑧,𝑥)
= −

𝜕(𝑦,𝑥)

𝜕(𝑥,𝑧)
. Then 

E = −
𝜕(𝑥,𝑧)

𝜕(𝑦,𝑧)

𝜕(𝑦,𝑥)

𝜕(𝑥,𝑧)

𝜕(𝑧,𝑦)

𝜕(𝑥,𝑦)
  (28)  

next, for the two first factors, we will apply the rule of 

chain for Jacobians. Thus, we obtain 

E = −
𝜕(𝑦,𝑥)

𝜕(𝑦,𝑧)

𝜕(𝑧,𝑦)

𝜕(𝑥,𝑦)
  (29)  

we again will permute, that is, we will use 
𝜕(𝑦,𝑥)

𝜕(𝑦,𝑧)
= −

𝜕(𝑥,𝑦)

𝜕(𝑦,𝑧)
. 

Then 

E = −(−)
𝜕(𝑥,𝑦)

𝜕(𝑦,𝑧)

𝜕(𝑧,𝑦)

𝜕(𝑥,𝑦)
       (30)  

by using the rule of chain for Jacobians again, we get 

E =
𝜕(𝑧,𝑦)

𝜕(𝑦,𝑧)
   (31)  

and after making the final permutation, we obtain 

E = −
𝜕(𝑦,𝑧)

𝜕(𝑦,𝑧)
= −1 (32)  

but E = (
𝜕𝑥

𝜕𝑦
)

𝑧
(

𝜕𝑦

𝜕𝑧
)

𝑥
(

𝜕𝑧

𝜕𝑥
)

𝑦
 therefore, we have 

demonstrated the triple product rule: 

(
𝜕𝑥

𝜕𝑦
)

𝑧
(

𝜕𝑦

𝜕𝑧
)

𝑥
(

𝜕𝑧

𝜕𝑥
)

𝑦
= −1          (33) 

III. RESULTS AND DISCUSSION 

A. Analysis and Comments  

Next, we will do an ordered and sequential analysis 

according to the content from Stepanov (2021) [2]. 

a. Concerning the non-strict derivation of the triple 

product rule, which appears in Stepanov (2021) 

The non-strict derivation continues to be valid despite 

arguments from Stepanov (2021), since if we have a 

function 𝑧 = 𝑓(𝑥, 𝑦) then equalise it to a constant 𝑘, 𝑧 = 𝑘, 

implies that we now deal with a level curve with [dz]𝑧=𝑘 =

0. However, this does not imply that [(
𝜕𝑧

𝜕𝑥
)

𝑦
]

𝑧=𝑘

= 0 and  

[(
𝜕𝑧

𝜕𝑦
)

𝑥
]

𝑧=𝑘

= 0.  
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Therefore, equation (6) from Stepanov (2021), which we 

will label as (S.6), 

0 = (
𝜕𝑧

𝜕𝑥
)

𝑦𝑧
𝑑𝑥 + (

𝜕𝑧

𝜕𝑦
)

𝑥𝑧

,        (S.6) 

must be replaced by 

[𝑑𝑧]𝑧=𝑘 = 0 = [(
𝜕𝑧

𝜕𝑥
)

𝑦
𝑑𝑥 + (

𝜕𝑧

𝜕𝑦
)

𝑥

𝑑𝑦]
𝑧=𝑘

     (34) 

Next, regarding this topic, we will give a specific 

example. Let 𝑧 = 𝑓(𝑥, 𝑦) = (25 − 𝑥2 − 𝑦2)1/2  with 0 ≤
𝑧 ≤ 5, that is, the equation of a quarter sphere centred at 

the origin and with radius 5. If we only consider the cross 

section for 𝑧 = 4, we obtain a quarter circumference, 4 =
(25 − 𝑥2 − 𝑦2)1/2  or 𝑦 = (9 − 𝑥2)1/2  with 0 ≤ 𝑥 ≤ 3 . 

Then, according to Eq. (34), we have 

[𝑑𝑧]𝑧=4 = [
1

2
(25 − 𝑥2 − 𝑦2)−

1

2(−2𝑥)𝑑𝑥 +

1

2
(25 − 𝑥2 − 𝑦2)−

1

2(−2𝑦)𝑑𝑦]
𝑧=4

  (35) 

after simplifying, we obtain 

[𝑑𝑧]𝑧=4 = − [(25 − 𝑥2 − 𝑦2)−
1

2(𝑥𝑑𝑥 + 𝑦𝑑𝑦)]
𝑧=4

(36) 

now, since 𝑦 = (9 − 𝑥2)
1

2 , then 𝑑𝑦 =
1

2
(9 −

𝑥2)−
1

2(−2𝑥)d𝑥, and by replacing these expressions in Eq. 

(36), we get as follows: 

[𝑑𝑧]𝑧=4 = − [(25 − 𝑥2 − 𝑦2)−
1

2[𝑥𝑑𝑥 + (9 −

𝑥2)
1

2  
1

2
(9 − 𝑥2)−

1

2(−2𝑥)d𝑥]]
𝑧=4

  (37) 

thus, 

[𝑑𝑧]𝑧=4 = − [(25 − 𝑥2 − 𝑦2)−
1

2(𝑥𝑑𝑥 − 𝑥d𝑥)]
𝑧=4

(38) 

that is, 
[𝑑𝑧]𝑧=4 = 0     (39) 

 

Now, we will come back to the non-strict derivation of 

the triple product rule. Since 𝑧 = 𝑘 is a level curve and not 

a plane (for 𝑧 = 𝑓(𝑥, 𝑦)), then  

[𝑑𝑦]𝑧=𝑘 = [(
𝜕𝑦

𝜕𝑥
)

𝑧
]

𝑧=𝑘

[𝑑𝑥]𝑧=𝑘  (40) 

by replacing Eq. (40) into Eq. (34), we get 

0 = [(
𝜕𝑧

𝜕𝑥
)

𝑦
𝑑𝑥 + (

𝜕𝑧

𝜕𝑦
)

𝑥

(
𝜕𝑦

𝜕𝑥
)

𝑧
𝑑𝑥]

𝑧=𝑘

     (41) 

now, we factor out 𝑑𝑥, 

0 = [(
𝜕𝑧

𝜕𝑥
)

𝑦
+ (

𝜕𝑧

𝜕𝑦
)

𝑥

(
𝜕𝑦

𝜕𝑥
)

𝑧
]

𝑧=𝑘

[𝑑𝑥]𝑧=𝑘    (42) 

consequently 

0 = [(
𝜕𝑧

𝜕𝑥
)

𝑦
+ (

𝜕𝑧

𝜕𝑦
)

𝑥

(
𝜕𝑦

𝜕𝑥
)

𝑧
]

𝑧=𝑘

    (43) 

or 

[(
𝜕𝑧

𝜕𝑥
)

𝑦
]

𝑧=𝑘

= − [(
𝜕𝑧

𝜕𝑦
)

𝑥
(

𝜕𝑦

𝜕𝑥
)

𝑧
]

𝑧=𝑘

   (44) 

finally, we obtain  

[(
𝜕𝑥

𝜕𝑦
)

𝑧
(

𝜕𝑦

𝜕𝑧
)

𝑥
(

𝜕𝑧

𝜕𝑥
)

𝑦
]

𝑧=𝑘

= −1    (45) 

Usually, in the literature, the square brackets and 

evaluation at 𝑧 = 𝑘 are omitted. 

b. Concerning the stricter derivation of the triple 

product rule, which appears in Stepanov (2021) 

 The two formulas of Eq. (8) from Stepanov (2021), 

which we will label as (S.8), 

𝑑𝑥 = [𝑑𝑥]𝑧=const + [𝑑𝑥]𝑦=const = (
𝜕𝑥

𝜕𝑦
)

𝑧
𝑑𝑦 +

(
𝜕𝑥

𝜕𝑧
) 𝑑𝑧𝑦        (S.8) 

require clarification: formula 

𝑑𝑥 = (
𝜕𝑥

𝜕𝑦
)

𝑧
𝑑𝑦 + (

𝜕𝑥

𝜕𝑧
)

𝑦

𝑑𝑧  (46) 

is standard, generic and correct, but regarding formula 

𝑑𝑥 = [𝑑𝑥]𝑧=const + [𝑑𝑥]𝑦=const   (47) 

it is only valid on a certain path in the 𝑍𝑌 plane (see Fig. 

1). Thus, if we have a function 𝑥 = 𝑓(𝑦, 𝑧), Eq. (47) is 

only valid for the path drawn in Fig. 1. Likewise, for the 

path in Fig. 2, the following equation is valid:       

𝑑𝑥 = [(
𝜕𝑥

𝜕𝑦
)

𝑧
𝑑𝑦 + (

𝜕𝑥

𝜕𝑧
)

𝑦
𝑑𝑧]

𝑧=𝑚𝑦

 (48) 

In thermodynamics of reversible processes, we must 

consider 𝑥, 𝑦, and 𝑧 as functions of state, that is, it does not 

matter which path we follow to go from an initial state to a 

final state: the difference of the respective variable is 

always the same. Therefore, regarding the stricter 

derivation of the triple product rule, appearing in Stepanov 

(2021), but which is not his authorship, it is valid because it 

is always possible to find a way that allows us to reach the 

correct result, that is, the triple product rule.    

 
Figure 1. The 𝒁𝒀 Plane Showing a Path Where 

Variables 𝒛 and 𝒚 are Independent 

 
Figure 2. The 𝒁𝒀 Plane Showing a Path Where 

Variables 𝒛 And 𝒚 Are Dependent 

c. Concerning equation (19) of Stepanov (2021)  

We will label the equation as (S.19),  

(
𝜕𝑉

𝜕𝑇
)

𝑃
= − (

𝜕𝑉

𝜕𝑃
)

𝑇
(

𝜕𝑃

𝜕𝑇
)

𝑉
 .  (S.19) 

It relates the coefficient of thermal expansion 𝛼 =
1

𝑉
(

𝜕𝑉

𝜕𝑇
)

𝑃
, coefficient of isothermal compression 𝛽 =

−
1

𝑉
(

𝜕𝑉

𝜕𝑃
)

𝑇
 and thermal coefficient of pressure 𝛾 =

1

𝑃
(

𝜕𝑃

𝜕𝑇
)

𝑉
. 

Formula (S.19) usually is expressed as 𝛼 = 𝛽𝛾𝑃  and it 

remains valid despite the arguments that Stepanov (2021) 

used. To clarify this matter, we can guide ourselves with 

equations of state. For example, we can use the Clapeyron 

equation for an ideal gas, the van der Waals equation, 

Dieterici’s equations or modified Berthelot equation for a 

real gas. All of them satisfy Eq. (S.19).  
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Likewise, when we heat the gas by using compression, 

we have Eq. (20) of Stepanov (2021), which we will label 

as (S.20), 

(
𝜕𝑉

𝜕𝑃
)

𝑇
= − (

𝜕𝑇

𝜕𝑃
)

𝑉
(

𝜕𝑉

𝜕𝑇
)

𝑃
   (S.20) 

it is also verified by the equations of state of Clapeyron, 

van der Waals, Dieterici, and Berthelot, respectively.  Eq. 

(S.20) can be expressed as 𝛽 =
𝛼

P𝛾
. 

d. Regarding formulas (21) and (22) of Stepanov 

(2021), for isobaric and isochoric processes, respectively 

These formulas are as follows: 

𝑑𝑄 = 𝑑𝑈 + 𝑃𝑑𝑉    (S.21) 

𝑑𝑄 = 𝑑𝑈 + 𝑉𝑑𝑃   (S.22) 

Formula (S.21) is correct but misinterpreted. It is valid 

for a process in which 𝑃 could or could not be a constant; 

an isobaric process is not the only option. And formula 

(S.22) is false, since for an isochoric process the work is 

zero and according to the first law of thermodynamics, we 

have 

𝛿𝑄 = 𝑑𝑈  .  (49) 

Specifically, the misinterpretation in formulas (S.21) and 

(S.22) is to assume wrongly that work is defined as 

𝑊 = 𝑃𝑉   (50) 

and from here the product of two functions could be 

derived to obtain falsely the work differential. Work must 

be defined as 

𝑊 = ∫ 𝑃𝑑𝑉   (51) 

and when 𝑃 is constant, we have 𝑊 = 𝑃𝑉. Therefore, to 

make physical interpretations, there is a sequence of steps 

we must necessarily respect.  

e. Concerning the claim that Mayer´s relation is 

untrue because it has been demonstrated by using the triple 

product rule 

There are several demonstrations in the literature that are 

still valid because the triple product rule is correct.  Next, 

we show a demonstration by using the properties of 

Jacobians [8,9]. Based on Bazarov (1964) [8], we begin 

from 

𝐶𝑃 − 𝐶𝑉 = 𝑇 (
𝜕𝑃

𝜕𝑇
)

𝑉
(

𝜕𝑉

𝜕𝑇
)

𝑃
  (52) 

now we use 

(
𝜕𝑃

𝜕𝑇
)

𝑉
=

𝜕(𝑃,𝑉)

𝜕(𝑇,𝑉)
= −

𝜕(𝑉,𝑃)

𝜕(𝑇,𝑉)

𝜕(𝑇,𝑉)

𝜕(𝑇,𝑃)

𝜕(𝑇,𝑃)

𝜕(𝑇,𝑉)
 (53) 

simplifying, we have 

(
𝜕𝑃

𝜕𝑇
)

𝑉
= − (

𝜕𝑉

𝜕𝑇
)

𝑃

𝜕(𝑇,𝑃)

𝜕(𝑇,𝑉)
= −

(
𝜕𝑉

𝜕𝑇
)

𝑃
𝜕(𝑇,𝑉)

𝜕(𝑇,𝑃)

= −
(

𝜕𝑉

𝜕𝑇
)

𝑃

(
𝜕𝑉

𝜕𝑃
)

𝑇

  (54) 

replacing Eq. (54) in Eq. (52) we have  

𝐶𝑃 − 𝐶𝑉 = −𝑇
[(

𝜕𝑉

𝜕𝑇
)

𝑃
]
2

(
𝜕𝑉

𝜕𝑃
)

𝑇

= −𝑇
[

1

𝑉
(

𝜕𝑉

𝜕𝑇
)

𝑃
]
2

1

𝑉
[

1

𝑉
(

𝜕𝑉

𝜕𝑃
)

𝑇
]
  (55) 

or 

𝐶𝑃 − 𝐶𝑉 = −𝑇
𝛼2

1

𝑉
𝛽

= −𝑇𝑉
𝛼2

𝛽
   (56) 

This way we have obtained the Mayer´s relation for heat 

capacities. 

IV. CONCLUSIONS  

All conclusions appearing in Stepanov (2021) are not 

precise. Specifically, it continues to be valid the triple 

product rule, Mayer's relation. Likewise, it continues to be 

valid the relationship between the coefficient of thermal 

expansion, coefficient of isothermal compressibility and 

thermal coefficient of pressure.  
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