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Abstract: We obtain a recurrence relation for the Ramanujan’s 

tau-function involving the sum of divisors function, and the 

solution of this recurrence gives a closed formula for 𝝉(𝒏) in 

terms of the complete Bell polynomials. 
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I. INTRODUCTION 

We know the following recurrence relation [1-3][29][30]: 

 

𝑛 𝑝𝑘(𝑛) = −𝑘 ∑ 𝜎(𝑗)𝑛
𝑗=1 𝑝𝑘(𝑛 − 𝑗),         𝑛 ≥ 1,                    

(1) 

 

where 𝜎 is the sum of divisors function [4-8][31] and𝑝𝑘(𝑛) 

is the number of color partitions of n [9-12]. The solution of 

(1) is given by [3]: 

 

𝑝𝑘(𝑛) =
1

𝑛!
𝐵𝑛(−𝑘 ∙ 0! 𝜎(1), −𝑘 ∙ 1! 𝜎(2), −𝑘 ∙

2! 𝜎(3), … , −𝑘 ∙ (𝑛 − 1)! 𝜎(𝑛)),                                              (2) 

 

in terms of the complete Bell polynomials [13-19]. In Sec. 2 

we use (1) and (2) for the case 𝑘 = 24 to obtain a recurrence 

relation verified by the Ramanujan’s tau-function and its 

corresponding closed expression via Bell polynomials. 

II. RAMANUJAN’S FUNCTION 𝝉(𝒏) [20] 

We have the connection: 

𝑝24(𝑛) = 𝜏(𝑛 + 1),                                                            (3) 

 

then (1) implies the following recurrence relation for the 

Ramanujan’s tau-function: 

𝑛 𝜏(𝑛 + 1) = −24 ∑ 𝜎(𝑗)𝑛
𝑗=1  𝜏(𝑛 + 1 − 𝑗),   𝑛 ≥ 1,     (4) 
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which gives an easy recursive manner to determine the 

values of 𝜏(𝑚):1, -24, 252, -1472, 4830, -6048,…, that is, 

the sequence A000594 [21].The property (4) is an 

alternative to the computationally efficient triangular 

recurrence formula [20, 22-24]: 

(𝑛 − 1) 𝜏(𝑛) = ∑ (−1)𝑚+1∟𝑏𝑛⅃
𝑚=1 (2𝑚 + 1) (𝑛 − 1 −

9

2
𝑚(𝑚 + 1))  𝜏 (𝑛 −

1

2
𝑚(𝑚 + 1)),                                   (5) 

 

where  𝑏𝑛 =
1

2
(√8𝑛 + 1 − 1). 

 

   From (2) and (3) it is immediate a closed expression for 

the Ramanujan’s tau-function in terms of the complete Bell 

polynomials: 

 

𝜏(𝑛 + 1) =
1

𝑛!
𝐵𝑛(−24 ∙ 0! 𝜎(1), −24 ∙ 1! 𝜎(2), −24 ∙

2! 𝜎(3), … , −24 ∙ (𝑛 − 1)! 𝜎(𝑛)),       𝑛 ≥ 0,                    (6)    

which also allows reproduce the sequence of integers 

A000594; we can consider to (6) as an alternative to several 

expressions in the literature, for example [25, 26]: 

 

𝜏(𝑛) = 𝑛4 𝜎(𝑛) − 24 ∑ 𝑘2𝑛−1
𝑘=1 (35 𝑘2 − 52 𝑘 𝑛 +

18 𝑛2) 𝜎(𝑘) 𝜎(𝑛 − 𝑘),       𝑛 ≥ 1,                                            (7) 

 

or for the closed relations [24, 27]: 

 

𝜏(𝑛) = 8000 ((𝜎3 ∗ 𝜎3) ∗ 𝜎3)(𝑛) − 147 (𝜎5 ∗

𝜎5)(𝑛),                 𝜎𝑟(𝑚) = ∑ 𝑑𝑟
𝑑𝘐𝑚 ,             𝑚 ≥ 1,             (8) 

 

=
65

756
𝜎11(𝑛) +

691

756
𝜎5(𝑛) −

691

3
∑ 𝜎5(𝑘)𝑛−1 

𝑘=1 𝜎5(𝑛 −

𝑘),     𝜎3(0) =
1

240
  ,     𝜎5(0) = −

1

504
  ,                              (9) 

 

where  ∗  denotes Cauchy convolution [6]. 

 

Remark: The relations (1) and (4) were obtained by Gandhi 

[9, 28] and Ramanujan [20], respectively. 

III. CONCLUSION 

The main aim of this paper is to obtain the closed form of 

Ramanujan’s Tau function in terms of complete Bell 

Polynomials. For this, we considered a recurrence relation 

connecting colored partitions in terms of sum of divisor 

function of a positive integer n as in (1). The solution of this 

recurrence relation in terms of complete Bell polynomials is 

presented in (2).  
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By considering the case for k = 24, we connect colored 

partitions of n with Ramanujan’s Tau function as in (3). 

Using this, we have connected Ramanujan’s Tau function 

with complete Bell polynomials as in (6). Now using 

expression (6), we have found an expression for 

Ramanujan’s Tau function in terms of divisor function using 

Cauchy convolution product as presented in (8) and (9). 

These expressions provide an alternate view of expressing 

Ramanujan’s Tau function in terms of simple arithmetic 

functions.  
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